IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i15p2733-2750.html
   My bibliography  Save this article

Longleaf pine (Pinus palustris) and hardwood dynamics in a fire-maintained ecosystem: A simulation approach

Author

Listed:
  • Loudermilk, E.L.
  • Cropper, W.P.
  • Mitchell, R.J.
  • Lee, H.

Abstract

Longleaf pine (Pinus palustris) savannas of the southeastern U.S. represent an archetype of a fire dependent ecosystem. They are known to have very short fire return intervals (∼1–3 years) that perpetuate understory plant diversity (up to 50 species m−2), support pine recruitment, and suppress fire sensitive hardwoods. Understanding the relationships that regulate longleaf and southern hardwoods is especially critical. With decreased fire frequency, insufficient intensity, or lack of underground competition, a woody mid-story rapidly develops, dominated by fire sensitive trees and shrubs that in-turn suppress more fire dependent species (including pine seedlings). This may occur in forest gaps, where pine-needle abundance is diminished, reducing fire spread potential. The interactions between longleaf pine, hardwoods, forest fuels, and fire frequency are complex and difficult to understand spatially. The objective of this study was to develop a spatially explicit longleaf pine–hardwood stochastic simulation model (LLM), incorporating tree demography, plant competition, and fuel and fire characteristics. Data from two longleaf pine study sites were used to develop and evaluate the model with the goal to incorporate simple site-specific calibration parameters for model versatility. Specific model components included pine seed masting, hardwood clonal sprouting, response to fire (re-sprouting, mortality), and tree density driven competition effects. LLM spatial outputs were consistent with observed forest gap dynamics associated with pine seedling establishment and hardwood encroachment. Changes in fire frequency (i.e., fire probability=0.35–0.05) illustrated a shift in community structure from longleaf pine dominated to a hardwood dominated community. This approach to assessing model response may be useful in characterizing longleaf ecosystem resilience, especially at intermediate fire frequencies (e.g., 0.15) where the community may be sensitive to small changes in the fire regime. Height distributions and population densities were similar to in situ findings (field and LIDAR data) for both study sites. Height distributions output by the LLM illustrated fluctuations in population structure. The LLM was especially useful in determining knowledge gaps associated with fuel and fire heterogeneity, plant–plant interactions, population structure and its temporal fluctuations, and hardwood demography. This is the first known modeling work to simulate interactions between longleaf pine and hardwoods and provides a foundation for further studies on fire and forest management, especially in relation to ecological forestry practices, restoration, and site-specific applications.

Suggested Citation

  • Loudermilk, E.L. & Cropper, W.P. & Mitchell, R.J. & Lee, H., 2011. "Longleaf pine (Pinus palustris) and hardwood dynamics in a fire-maintained ecosystem: A simulation approach," Ecological Modelling, Elsevier, vol. 222(15), pages 2733-2750.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:15:p:2733-2750
    DOI: 10.1016/j.ecolmodel.2011.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011002626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahesh Sankaran & Niall P. Hanan & Robert J. Scholes & Jayashree Ratnam & David J. Augustine & Brian S. Cade & Jacques Gignoux & Steven I. Higgins & Xavier Le Roux & Fulco Ludwig & Jonas Ardo & Feetha, 2005. "Determinants of woody cover in African savannas," Nature, Nature, vol. 438(7069), pages 846-849, December.
    2. Bean, William T. & Sanderson, Eric W., 2008. "Using a spatially explicit ecological model to test scenarios of fire use by Native Americans: An example from the Harlem Plains, New York, NY," Ecological Modelling, Elsevier, vol. 211(3), pages 301-308.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McDanold, Jenna S. & Linn, Rodman R. & Jonko, Alex K. & Atchley, Adam L. & Goodrick, Scott L. & Hiers, J. Kevin & Hoffman, Chad M. & Loudermilk, E. Louise & O'Brien, Joseph J. & Parsons, Russell A. & , 2023. "DUET - Distribution of Understory using Elliptical Transport: A mechanistic model of leaf litter and herbaceous spatial distribution based on tree canopy structure," Ecological Modelling, Elsevier, vol. 483(C).
    2. Jafarov, Elchin E. & Loudermilk, Louise E. & Hiers, Kevin J. & Williams, Brett & Linn, Rodman & Jones, Chas & Hill, Samantha C. & Atchley, Adam L., 2021. "Linking habitat suitability with a longleaf pine-hardwood model: Building a species-predictive fire-land management framework," Ecological Modelling, Elsevier, vol. 440(C).
    3. Sánchez-López, Nuria & Hudak, Andrew T. & Boschetti, Luigi & Silva, Carlos A. & Robertson, Kevin & Loudermilk, E Louise & Bright, Benjamin C. & Callaham, Mac A. & Taylor, Melanie K., 2023. "A spatially explicit model of tree leaf litter accumulation in fire maintained longleaf pine forests of the southeastern US," Ecological Modelling, Elsevier, vol. 481(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Larissa Robinov & Chris Hopkinson & Mark C. Vanderwel, 2021. "Topographic Variation in Forest Expansion Processes across a Mosaic Landscape in Western Canada," Land, MDPI, vol. 10(12), pages 1-18, December.
    2. Tchuinté Tamen, A. & Dumont, Y. & Tewa, J.J. & Bowong, S. & Couteron, P., 2017. "A minimalistic model of tree–grass interactions using impulsive differential equations and non-linear feedback functions of grass biomass onto fire-induced tree mortality," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 133(C), pages 265-297.
    3. Cecilia Parracciani & Robert Buitenwerf & Jens-Christian Svenning, 2023. "Impacts of Climate Change on Vegetation in Kenya: Future Projections and Implications for Protected Areas," Land, MDPI, vol. 12(11), pages 1-20, November.
    4. Djeumen, I.V. Yatat & Dumont, Y. & Doizy, A. & Couteron, P., 2021. "A minimalistic model of vegetation physiognomies in the savanna biome," Ecological Modelling, Elsevier, vol. 440(C).
    5. Synodinos, Alexis D. & Tietjen, Britta & Jeltsch, Florian, 2015. "Facilitation in drylands: Modeling a neglected driver of savanna dynamics," Ecological Modelling, Elsevier, vol. 304(C), pages 11-21.
    6. Klaus Kellner & Jaco Fouché & David Tongway & Ricart Boneschans & Helga van Coller & Nanette van Staden, 2022. "Landscape Function Analysis: Responses to Bush Encroachment in a Semi-Arid Savanna in the Molopo Region, South Africa," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    7. Guo, Tong & Lohmann, Dirk & Ratzmann, Gregor & Tietjen, Britta, 2016. "Response of semi-arid savanna vegetation composition towards grazing along a precipitation gradient—The effect of including plant heterogeneity into an ecohydrological savanna model," Ecological Modelling, Elsevier, vol. 325(C), pages 47-56.
    8. Kenneth R. Young, 2023. "Reflections on the Dynamics of Savanna Landscapes," Land, MDPI, vol. 12(10), pages 1-12, September.
    9. Meyer, Katrin M. & Wiegand, Kerstin & Ward, David & Moustakas, Aristides, 2007. "SATCHMO: A spatial simulation model of growth, competition, and mortality in cycling savanna patches," Ecological Modelling, Elsevier, vol. 209(2), pages 377-391.
    10. Accatino, Francesco & De Michele, Carlo, 2013. "Humid savanna–forest dynamics: A matrix model with vegetation–fire interactions and seasonality," Ecological Modelling, Elsevier, vol. 265(C), pages 170-179.
    11. Akpoué, Kouadio Jean-Philippe & Barot, Sébastien & Raynaud, Xavier & Gignoux, Jacques, 2021. "Modeling the biomass allocation of tree resprout in a fire-prone savanna," Ecological Modelling, Elsevier, vol. 448(C).
    12. Epstein, Graham & Vogt, Jessica & Cox, Michael & Shimek, Luke, 2014. "Confronting problems of method in the study of sustainability," Forest Policy and Economics, Elsevier, vol. 42(C), pages 42-50.
    13. Blanco, Carolina Casagrande & Scheiter, Simon & Sosinski, Enio & Fidelis, Alessandra & Anand, Madhur & Pillar, Valério D., 2014. "Feedbacks between vegetation and disturbance processes promote long-term persistence of forest–grassland mosaics in south Brazil," Ecological Modelling, Elsevier, vol. 291(C), pages 224-232.
    14. Guo, Tong & Weise, Hanna & Fiedler, Sebastian & Lohmann, Dirk & Tietjen, Britta, 2018. "The role of landscape heterogeneity in regulating plant functional diversity under different precipitation and grazing regimes in semi-arid savannas," Ecological Modelling, Elsevier, vol. 379(C), pages 1-9.
    15. Pachzelt, Adrian & Rammig, Anja & Higgins, Steven & Hickler, Thomas, 2013. "Coupling a physiological grazer population model with a generalized model for vegetation dynamics," Ecological Modelling, Elsevier, vol. 263(C), pages 92-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:15:p:2733-2750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.