IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v133y2017icp265-297.html
   My bibliography  Save this article

A minimalistic model of tree–grass interactions using impulsive differential equations and non-linear feedback functions of grass biomass onto fire-induced tree mortality

Author

Listed:
  • Tchuinté Tamen, A.
  • Dumont, Y.
  • Tewa, J.J.
  • Bowong, S.
  • Couteron, P.

Abstract

Since savannas are important ecosystems around the world, their long term dynamics is an important issue, in particular when perturbations, like fires, occur more or less often. In a previous paper, we developed and studied a tree–grass model that take into account fires as pulse events using impulsive differential equations. In this work, we propose to improve this impulsive model by considering the impact of pulse fire on tree biomass by means of combination of two nonlinear functions of grass and tree biomasses respectively. By considering two impact functions, our model yields more complex dynamics, allowing for the possibility of various bistabilities and periodic solutions, in either grassland or savanna states in the ecosystem. Our mathematical analysis allows extensive and realistic description of savannas ecosystems, than previous modelling approaches. We also highlight several threshold parameters that summarize all possible dynamics, as well as three main parameters of bifurcations in the tree–grass dynamics: the fire period, the tree–grass facilitation/competition parameter, and the fire intensity. Using an appropriate nonstandard numerical scheme, we provide numerical simulations to discuss some ecologically interesting cases that our model is able to exhibit along a rainfall gradient, observable in Central Africa.

Suggested Citation

  • Tchuinté Tamen, A. & Dumont, Y. & Tewa, J.J. & Bowong, S. & Couteron, P., 2017. "A minimalistic model of tree–grass interactions using impulsive differential equations and non-linear feedback functions of grass biomass onto fire-induced tree mortality," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 133(C), pages 265-297.
  • Handle: RePEc:eee:matcom:v:133:y:2017:i:c:p:265-297
    DOI: 10.1016/j.matcom.2016.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475416300258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2016.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahesh Sankaran & Niall P. Hanan & Robert J. Scholes & Jayashree Ratnam & David J. Augustine & Brian S. Cade & Jacques Gignoux & Steven I. Higgins & Xavier Le Roux & Fulco Ludwig & Jonas Ardo & Feetha, 2005. "Determinants of woody cover in African savannas," Nature, Nature, vol. 438(7069), pages 846-849, December.
    2. Beckage, Brian & Gross, Louis J. & Platt, William J., 2011. "Grass feedbacks on fire stabilize savannas," Ecological Modelling, Elsevier, vol. 222(14), pages 2227-2233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Djeumen, I.V. Yatat & Dumont, Y. & Doizy, A. & Couteron, P., 2021. "A minimalistic model of vegetation physiognomies in the savanna biome," Ecological Modelling, Elsevier, vol. 440(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Djeumen, I.V. Yatat & Dumont, Y. & Doizy, A. & Couteron, P., 2021. "A minimalistic model of vegetation physiognomies in the savanna biome," Ecological Modelling, Elsevier, vol. 440(C).
    2. Accatino, Francesco & De Michele, Carlo, 2013. "Humid savanna–forest dynamics: A matrix model with vegetation–fire interactions and seasonality," Ecological Modelling, Elsevier, vol. 265(C), pages 170-179.
    3. Blanco, Carolina Casagrande & Scheiter, Simon & Sosinski, Enio & Fidelis, Alessandra & Anand, Madhur & Pillar, Valério D., 2014. "Feedbacks between vegetation and disturbance processes promote long-term persistence of forest–grassland mosaics in south Brazil," Ecological Modelling, Elsevier, vol. 291(C), pages 224-232.
    4. Larissa Robinov & Chris Hopkinson & Mark C. Vanderwel, 2021. "Topographic Variation in Forest Expansion Processes across a Mosaic Landscape in Western Canada," Land, MDPI, vol. 10(12), pages 1-18, December.
    5. Chen-Charpentier, B. & Leite, M.C.A., 2014. "A model for coupling fire and insect outbreak in forests," Ecological Modelling, Elsevier, vol. 286(C), pages 26-36.
    6. Cecilia Parracciani & Robert Buitenwerf & Jens-Christian Svenning, 2023. "Impacts of Climate Change on Vegetation in Kenya: Future Projections and Implications for Protected Areas," Land, MDPI, vol. 12(11), pages 1-20, November.
    7. Synodinos, Alexis D. & Tietjen, Britta & Jeltsch, Florian, 2015. "Facilitation in drylands: Modeling a neglected driver of savanna dynamics," Ecological Modelling, Elsevier, vol. 304(C), pages 11-21.
    8. Klaus Kellner & Jaco Fouché & David Tongway & Ricart Boneschans & Helga van Coller & Nanette van Staden, 2022. "Landscape Function Analysis: Responses to Bush Encroachment in a Semi-Arid Savanna in the Molopo Region, South Africa," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    9. Guo, Tong & Lohmann, Dirk & Ratzmann, Gregor & Tietjen, Britta, 2016. "Response of semi-arid savanna vegetation composition towards grazing along a precipitation gradient—The effect of including plant heterogeneity into an ecohydrological savanna model," Ecological Modelling, Elsevier, vol. 325(C), pages 47-56.
    10. Kenneth R. Young, 2023. "Reflections on the Dynamics of Savanna Landscapes," Land, MDPI, vol. 12(10), pages 1-12, September.
    11. Meyer, Katrin M. & Wiegand, Kerstin & Ward, David & Moustakas, Aristides, 2007. "SATCHMO: A spatial simulation model of growth, competition, and mortality in cycling savanna patches," Ecological Modelling, Elsevier, vol. 209(2), pages 377-391.
    12. Akpoué, Kouadio Jean-Philippe & Barot, Sébastien & Raynaud, Xavier & Gignoux, Jacques, 2021. "Modeling the biomass allocation of tree resprout in a fire-prone savanna," Ecological Modelling, Elsevier, vol. 448(C).
    13. Epstein, Graham & Vogt, Jessica & Cox, Michael & Shimek, Luke, 2014. "Confronting problems of method in the study of sustainability," Forest Policy and Economics, Elsevier, vol. 42(C), pages 42-50.
    14. Loudermilk, E.L. & Cropper, W.P. & Mitchell, R.J. & Lee, H., 2011. "Longleaf pine (Pinus palustris) and hardwood dynamics in a fire-maintained ecosystem: A simulation approach," Ecological Modelling, Elsevier, vol. 222(15), pages 2733-2750.
    15. Guo, Tong & Weise, Hanna & Fiedler, Sebastian & Lohmann, Dirk & Tietjen, Britta, 2018. "The role of landscape heterogeneity in regulating plant functional diversity under different precipitation and grazing regimes in semi-arid savannas," Ecological Modelling, Elsevier, vol. 379(C), pages 1-9.
    16. Pachzelt, Adrian & Rammig, Anja & Higgins, Steven & Hickler, Thomas, 2013. "Coupling a physiological grazer population model with a generalized model for vegetation dynamics," Ecological Modelling, Elsevier, vol. 263(C), pages 92-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:133:y:2017:i:c:p:265-297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.