IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v263y2013icp92-102.html
   My bibliography  Save this article

Coupling a physiological grazer population model with a generalized model for vegetation dynamics

Author

Listed:
  • Pachzelt, Adrian
  • Rammig, Anja
  • Higgins, Steven
  • Hickler, Thomas

Abstract

Large grazers have played a fundamental role in grassland and savannah ecosystems since these vegetation types formed in the late Miocene, but the feedback loops between vegetation and large grazers are still not well understood. Modern dynamic global vegetation models (DGVMs) lack the explicit impact of herbivory, but are calibrated to benchmarks including herbivory. We coupled a generalized model for the population dynamics of large mammalian grazers, based on animal physiology, with a plant-physiological model for vegetation dynamics and ecosystem processes, applicable at local to global scales (LPJ-GUESS). To our knowledge, this is the first attempt to combine process-based grazer population and vegetation modelling in a single generalized modelling framework, applicable at regional to continental scales. The capability of the coupled model to reproduce real-world grazer densities was tested by comparing modelled biomass densities with empirical data from African game parks, where semi-natural grazer populations still exist. The model reproduced inter-park differences in long-term average grazer biomass densities and yielded similar dependencies between major environmental drivers (e.g. precipitation, annual net primary productivity (NPP), dry season length) and grazer population densities as found in other more empirical studies. Amongst the potential environmental drivers, modelled NPP and dry season length were most strongly correlated with empirical and modelled biomass densities. Major discrepancies between modelled and empirical densities occurred for individual parks, but this was expected because the model did not include all factors that influence grazer populations (e.g. nutrient dynamics and poaching). The generalized flexible framework of the coupled model makes it possible to apply the model to other regions, to include further processes (if data for parameterizing them is available) and to parameterize other types of grazers. It could become a useful tool for investigating interactions between grazers and vegetation in a process-based framework.

Suggested Citation

  • Pachzelt, Adrian & Rammig, Anja & Higgins, Steven & Hickler, Thomas, 2013. "Coupling a physiological grazer population model with a generalized model for vegetation dynamics," Ecological Modelling, Elsevier, vol. 263(C), pages 92-102.
  • Handle: RePEc:eee:ecomod:v:263:y:2013:i:c:p:92-102
    DOI: 10.1016/j.ecolmodel.2013.04.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013002494
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.04.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahesh Sankaran & Niall P. Hanan & Robert J. Scholes & Jayashree Ratnam & David J. Augustine & Brian S. Cade & Jacques Gignoux & Steven I. Higgins & Xavier Le Roux & Fulco Ludwig & Jonas Ardo & Feetha, 2005. "Determinants of woody cover in African savannas," Nature, Nature, vol. 438(7069), pages 846-849, December.
    2. Higgins, Steven I. & Kantelhardt, Jochen & Scheiter, Simon & Boerner, Jan, 2007. "Sustainable management of extensively managed savanna rangelands," Ecological Economics, Elsevier, vol. 62(1), pages 102-114, April.
    3. Hirata, M., 1999. "Modeling digestibility dynamics in leaf segments in a grass: a new approach to forage quality changes in a growing plant," Agricultural Systems, Elsevier, vol. 60(3), pages 169-174, June.
    4. SJ Ryan & CU Knechtel & WM Getz, 2007. "Ecological cues, gestation length, and birth timing in African buffalo (Syncerus caffer)," Behavioral Ecology, International Society for Behavioral Ecology, vol. 18(4), pages 635-644.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riggs, Robert A. & Keane, Robert E. & Cimon, Norm & Cook, Rachel & Holsinger, Lisa & Cook, John & DelCurto, Timothy & Baggett, L.Scott & Justice, Donald & Powell, David & Vavra, Martin & Naylor, Bridg, 2015. "Biomass and fire dynamics in a temperate forest-grassland mosaic: Integrating multi-species herbivory, climate, and fire with the FireBGCv2/GrazeBGC system," Ecological Modelling, Elsevier, vol. 296(C), pages 57-78.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Larissa Robinov & Chris Hopkinson & Mark C. Vanderwel, 2021. "Topographic Variation in Forest Expansion Processes across a Mosaic Landscape in Western Canada," Land, MDPI, vol. 10(12), pages 1-18, December.
    2. Mullen, Katharine M. & Ardia, David & Gil, David L. & Windover, Donald & Cline, James, 2011. "DEoptim: An R Package for Global Optimization by Differential Evolution," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i06).
    3. Scheiter, Simon & Savadogo, Patrice, 2016. "Ecosystem management can mitigate vegetation shifts induced by climate change in West Africa," Ecological Modelling, Elsevier, vol. 332(C), pages 19-27.
    4. Tchuinté Tamen, A. & Dumont, Y. & Tewa, J.J. & Bowong, S. & Couteron, P., 2017. "A minimalistic model of tree–grass interactions using impulsive differential equations and non-linear feedback functions of grass biomass onto fire-induced tree mortality," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 133(C), pages 265-297.
    5. Teague, W.R. & Kreuter, U.P. & Grant, W.E. & Diaz-Solis, H. & Kothmann, M.M., 2009. "Economic implications of maintaining rangeland ecosystem health in a semi-arid savanna," Ecological Economics, Elsevier, vol. 68(5), pages 1417-1429, March.
    6. Cecilia Parracciani & Robert Buitenwerf & Jens-Christian Svenning, 2023. "Impacts of Climate Change on Vegetation in Kenya: Future Projections and Implications for Protected Areas," Land, MDPI, vol. 12(11), pages 1-20, November.
    7. Domptail, Stéphanie & Nuppenau, Ernst-August, 2010. "The role of uncertainty and expectations in modeling (range)land use strategies: An application of dynamic optimization modeling with recursion," Ecological Economics, Elsevier, vol. 69(12), pages 2475-2485, October.
    8. Djeumen, I.V. Yatat & Dumont, Y. & Doizy, A. & Couteron, P., 2021. "A minimalistic model of vegetation physiognomies in the savanna biome," Ecological Modelling, Elsevier, vol. 440(C).
    9. Börner, Jan & Higgins, Steven I. & Scheiter, Simon & Kantelhardt, Jochen, 2013. "Approximating Optimal Numerical Solutions to Bio-economic Systems: How Useful is Simulation-optimization?," Quarterly Journal of International Agriculture, Humboldt-Universitaat zu Berlin, vol. 52(3), pages 1-20, August.
    10. Synodinos, Alexis D. & Tietjen, Britta & Jeltsch, Florian, 2015. "Facilitation in drylands: Modeling a neglected driver of savanna dynamics," Ecological Modelling, Elsevier, vol. 304(C), pages 11-21.
    11. Wilhelms, Steven C. & Coatney, Kalyn T. & Chaudhry, Anita M. & Rodgers, Aaron D., 2016. "Brinkmanship on the Commons: A Laboratory Experiment Related to African Pulaar Herders," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230085, Southern Agricultural Economics Association.
    12. Klaus Kellner & Jaco Fouché & David Tongway & Ricart Boneschans & Helga van Coller & Nanette van Staden, 2022. "Landscape Function Analysis: Responses to Bush Encroachment in a Semi-Arid Savanna in the Molopo Region, South Africa," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    13. repec:jss:jstsof:40:i06 is not listed on IDEAS
    14. Zhichao Xue & Martin Kappas & Daniel Wyss, 2021. "Spatio-Temporal Grassland Development in Inner Mongolia after Implementation of the First Comprehensive Nation-Wide Grassland Conservation Program," Land, MDPI, vol. 10(1), pages 1-16, January.
    15. Guo, Tong & Lohmann, Dirk & Ratzmann, Gregor & Tietjen, Britta, 2016. "Response of semi-arid savanna vegetation composition towards grazing along a precipitation gradient—The effect of including plant heterogeneity into an ecohydrological savanna model," Ecological Modelling, Elsevier, vol. 325(C), pages 47-56.
    16. Kenneth R. Young, 2023. "Reflections on the Dynamics of Savanna Landscapes," Land, MDPI, vol. 12(10), pages 1-12, September.
    17. Ardia, David & Boudt, Kris & Carl, Peter & Mullen, Katharine M. & Peterson, Brian, 2010. "Differential Evolution (DEoptim) for Non-Convex Portfolio Optimization," MPRA Paper 22135, University Library of Munich, Germany.
    18. Meyer, Katrin M. & Wiegand, Kerstin & Ward, David & Moustakas, Aristides, 2007. "SATCHMO: A spatial simulation model of growth, competition, and mortality in cycling savanna patches," Ecological Modelling, Elsevier, vol. 209(2), pages 377-391.
    19. Börner, Jan & Higgins, Steven Ian & Scheiter, Simon & Kantelhardt, Jochen, 2009. "Approximating optimal numerical solutions to bio-economic systems: How useful is simulation-optimization?," 2009 Conference, August 16-22, 2009, Beijing, China 51407, International Association of Agricultural Economists.
    20. Accatino, Francesco & De Michele, Carlo, 2013. "Humid savanna–forest dynamics: A matrix model with vegetation–fire interactions and seasonality," Ecological Modelling, Elsevier, vol. 265(C), pages 170-179.
    21. Jakoby, Oliver & Grimm, Volker & Frank, Karin, 2014. "Pattern-oriented parameterization of general models for ecological application: Towards realistic evaluations of management approaches," Ecological Modelling, Elsevier, vol. 275(C), pages 78-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:263:y:2013:i:c:p:92-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.