IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v291y2014icp224-232.html
   My bibliography  Save this article

Feedbacks between vegetation and disturbance processes promote long-term persistence of forest–grassland mosaics in south Brazil

Author

Listed:
  • Blanco, Carolina Casagrande
  • Scheiter, Simon
  • Sosinski, Enio
  • Fidelis, Alessandra
  • Anand, Madhur
  • Pillar, Valério D.

Abstract

Vegetation changes, such as shrub encroachment and forest expansion over grasslands, prairies and savannas have been related to changes in climatic (mainly rainfall and temperature) and atmospheric conditions (CO2 concentration). However, a longstanding question in ecology is how mosaics of forests and open-canopy ecosystems could persist over millennia in sites where climatic conditions favor forests. Here we tested the influence of interactions between grass-tree competition, environmental heterogeneity (topography), seed dispersal, initial density and spatial aggregation of vegetation patches and disturbance behavior (fire) on the long-term coexistence of forests and grasslands in South Brazil. For this, we incorporated the adaptive dynamic global vegetation model (aDGVM) into a spatially explicit modeling approach (2D-aDGVM). Our results showed that recurrent disturbance related to grasses such as fires plays a key role in maintaining the long-term coexistence of forests and grasslands, mainly through feedbacks between disturbance frequency and grass biomass. Topographic heterogeneity affected the rate of forest expansion by adding spatio-temporal variability in vegetation-fire feedbacks. However, the spatial pattern and connectivity of fire-prone (grasslands) and fire-sensitive (forest) vegetation patches were more important to maintain the long-term coexistence of both alternative vegetation states than the initial proportion of forest and grasslands patches. The model is the first individual-based DGVM to consider the combined effects of topography, seed dispersal and fire spread behavior in a spatially explicit approach.

Suggested Citation

  • Blanco, Carolina Casagrande & Scheiter, Simon & Sosinski, Enio & Fidelis, Alessandra & Anand, Madhur & Pillar, Valério D., 2014. "Feedbacks between vegetation and disturbance processes promote long-term persistence of forest–grassland mosaics in south Brazil," Ecological Modelling, Elsevier, vol. 291(C), pages 224-232.
  • Handle: RePEc:eee:ecomod:v:291:y:2014:i:c:p:224-232
    DOI: 10.1016/j.ecolmodel.2014.07.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014003615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.07.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahesh Sankaran & Niall P. Hanan & Robert J. Scholes & Jayashree Ratnam & David J. Augustine & Brian S. Cade & Jacques Gignoux & Steven I. Higgins & Xavier Le Roux & Fulco Ludwig & Jonas Ardo & Feetha, 2005. "Determinants of woody cover in African savannas," Nature, Nature, vol. 438(7069), pages 846-849, December.
    2. Beckage, Brian & Gross, Louis J. & Platt, William J., 2011. "Grass feedbacks on fire stabilize savannas," Ecological Modelling, Elsevier, vol. 222(14), pages 2227-2233.
    3. Steven I. Higgins & Simon Scheiter, 2012. "Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally," Nature, Nature, vol. 488(7410), pages 209-212, August.
    4. Collalti, Alessio & Perugini, Lucia & Santini, Monia & Chiti, Tommaso & Nolè, Angelo & Matteucci, Giorgio & Valentini, Riccardo, 2014. "A process-based model to simulate growth in forests with complex structure: Evaluation and use of 3D-CMCC Forest Ecosystem Model in a deciduous forest in Central Italy," Ecological Modelling, Elsevier, vol. 272(C), pages 362-378.
    5. Scheller, Robert M. & Domingo, James B. & Sturtevant, Brian R. & Williams, Jeremy S. & Rudy, Arnold & Gustafson, Eric J. & Mladenoff, David J., 2007. "Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution," Ecological Modelling, Elsevier, vol. 201(3), pages 409-419.
    6. M. I. Bird & J. A. Cali, 1998. "A million-year record of fire in sub-Saharan Africa," Nature, Nature, vol. 394(6695), pages 767-769, August.
    7. Scott R. Loarie & Philip B. Duffy & Healy Hamilton & Gregory P. Asner & Christopher B. Field & David D. Ackerly, 2009. "The velocity of climate change," Nature, Nature, vol. 462(7276), pages 1052-1055, December.
    8. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    9. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    10. J. R. Petit & J. Jouzel & D. Raynaud & N. I. Barkov & J.-M. Barnola & I. Basile & M. Bender & J. Chappellaz & M. Davis & G. Delaygue & M. Delmotte & V. M. Kotlyakov & M. Legrand & V. Y. Lipenkov & C. , 1999. "Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica," Nature, Nature, vol. 399(6735), pages 429-436, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Wenjiao & Liu, Yiting & Shi, Xiaoli, 2018. "Contributions of climate change to the boundary shifts in the farming-pastoral ecotone in northern China since 1970," Agricultural Systems, Elsevier, vol. 161(C), pages 16-27.
    2. Ulfia A. Lenfers & Nima Ahmady-Moghaddam & Daniel Glake & Florian Ocker & Julius Weyl & Thomas Clemen, 2022. "Modeling the Future Tree Distribution in a South African Savanna Ecosystem: An Agent-Based Model Approach," Land, MDPI, vol. 11(5), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Djeumen, I.V. Yatat & Dumont, Y. & Doizy, A. & Couteron, P., 2021. "A minimalistic model of vegetation physiognomies in the savanna biome," Ecological Modelling, Elsevier, vol. 440(C).
    2. Scheiter, Simon & Savadogo, Patrice, 2016. "Ecosystem management can mitigate vegetation shifts induced by climate change in West Africa," Ecological Modelling, Elsevier, vol. 332(C), pages 19-27.
    3. Tchuinté Tamen, A. & Dumont, Y. & Tewa, J.J. & Bowong, S. & Couteron, P., 2017. "A minimalistic model of tree–grass interactions using impulsive differential equations and non-linear feedback functions of grass biomass onto fire-induced tree mortality," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 133(C), pages 265-297.
    4. Cecilia Parracciani & Robert Buitenwerf & Jens-Christian Svenning, 2023. "Impacts of Climate Change on Vegetation in Kenya: Future Projections and Implications for Protected Areas," Land, MDPI, vol. 12(11), pages 1-20, November.
    5. Synodinos, Alexis D. & Tietjen, Britta & Jeltsch, Florian, 2015. "Facilitation in drylands: Modeling a neglected driver of savanna dynamics," Ecological Modelling, Elsevier, vol. 304(C), pages 11-21.
    6. Katherine Dagon & Daniel P. Schrag, 2019. "Quantifying the effects of solar geoengineering on vegetation," Climatic Change, Springer, vol. 153(1), pages 235-251, March.
    7. Accatino, Francesco & De Michele, Carlo, 2013. "Humid savanna–forest dynamics: A matrix model with vegetation–fire interactions and seasonality," Ecological Modelling, Elsevier, vol. 265(C), pages 170-179.
    8. Scheiter, Simon & Schulte, Judith & Pfeiffer, Mirjam & Martens, Carola & Erasmus, Barend F.N. & Twine, Wayne C., 2019. "How Does Climate Change Influence the Economic Value of Ecosystem Services in Savanna Rangelands?," Ecological Economics, Elsevier, vol. 157(C), pages 342-356.
    9. Christian Berger & Mari Bieri & Karen Bradshaw & Christian Brümmer & Thomas Clemen & Thomas Hickler & Werner Leo Kutsch & Ulfia A. Lenfers & Carola Martens & Guy F. Midgley & Kanisios Mukwashi & Victo, 2019. "Linking scales and disciplines: an interdisciplinary cross-scale approach to supporting climate-relevant ecosystem management," Climatic Change, Springer, vol. 156(1), pages 139-150, September.
    10. Ian Hodge & William M. Adams, 2016. "Short-Term Projects versus Adaptive Governance: Conflicting Demands in the Management of Ecological Restoration," Land, MDPI, vol. 5(4), pages 1-17, November.
    11. Thennakoon, Jayanthi & Findlay, Christopher & Huang, Jikun & Wang, Jinxia, 2020. "Management adaptation to flood in Guangdong Province in China: Do property rights Matter?," World Development, Elsevier, vol. 127(C).
    12. Jenerette, G. Darrel & Lal, Rattan, 2007. "Modeled carbon sequestration variation in a linked erosion–deposition system," Ecological Modelling, Elsevier, vol. 200(1), pages 207-216.
    13. Giuseppe Maggio & Marina Mastrorillo & Nicholas J. Sitko, 2022. "Adapting to High Temperatures: Effect of Farm Practices and Their Adoption Duration on Total Value of Crop Production in Uganda," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 385-403, January.
    14. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    15. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    16. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    17. Rustici, M. & Ceccherelli, G. & Piazzi, L., 2017. "Predator exploitation and sea urchin bistability: Consequence on benthic alternative states," Ecological Modelling, Elsevier, vol. 344(C), pages 1-5.
    18. Seydou Zakari & Germaine Ibro & Bokar Moussa & Tahirou Abdoulaye, 2022. "Adaptation Strategies to Climate Change and Impacts on Household Income and Food Security: Evidence from Sahelian Region of Niger," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    19. Rodrigues, João & Domingos, Tiago & Conceição, Pedro & Belbute, José, 2005. "Constraints on dematerialisation and allocation of natural capital along a sustainable growth path," Ecological Economics, Elsevier, vol. 54(4), pages 382-396, September.
    20. Xu Luo & Hong S. He & Yu Liang & Jacob S. Fraser & Jialin Li, 2018. "Mitigating the Effects of Climate Change through Harvesting and Planting in Boreal Forests of Northeastern China," Sustainability, MDPI, vol. 10(10), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:291:y:2014:i:c:p:224-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.