IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v19y2009i3p423-455.html
   My bibliography  Save this article

Maximizing The Growth Rate Under Risk Constraints

Author

Listed:
  • Traian A. Pirvu
  • Gordan Žitković

Abstract

We investigate the ergodic problem of growth‐rate maximization under a class of risk constraints in the context of incomplete, Itô‐process models of financial markets with random ergodic coefficients. Including value‐at‐risk, tail‐value‐at‐risk, and limited expected loss, these constraints can be both wealth‐dependent (relative) and wealth‐independent (absolute). The optimal policy is shown to exist in an appropriate admissibility class, and can be obtained explicitly by uniform, state‐dependent scaling down of the unconstrained (Merton) optimal portfolio. This implies that the risk‐constrained wealth‐growth optimizer locally behaves like a constant relative risk aversion (CRRA) investor, with the relative risk‐aversion coefficient depending on the current values of the market coefficients.

Suggested Citation

  • Traian A. Pirvu & Gordan Žitković, 2009. "Maximizing The Growth Rate Under Risk Constraints," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 423-455, July.
  • Handle: RePEc:bla:mathfi:v:19:y:2009:i:3:p:423-455
    DOI: 10.1111/j.1467-9965.2009.00378.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9965.2009.00378.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9965.2009.00378.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    2. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    3. Wang, Tan, 2003. "Conditional preferences and updating," Journal of Economic Theory, Elsevier, vol. 108(2), pages 286-321, February.
    4. Leippold, Markus & Trojani, Fabio & Vanini, Paolo, 2006. "Equilibrium impact of value-at-risk regulation," Journal of Economic Dynamics and Control, Elsevier, vol. 30(8), pages 1277-1313, August.
    5. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    6. Michael Taksar & Michael J. Klass & David Assaf, 1988. "A Diffusion Model for Optimal Portfolio Selection in the Presence of Brokerage Fees," Mathematics of Operations Research, INFORMS, vol. 13(2), pages 277-294, May.
    7. Paul A. Samuelson, 2011. "Why We Should Not Make Mean Log of Wealth Big Though Years to Act Are Long," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 34, pages 491-493, World Scientific Publishing Co. Pte. Ltd..
    8. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    9. MacLean, Leonard C. & Sanegre, Rafael & Zhao, Yonggan & Ziemba, William T., 2004. "Capital growth with security," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 937-954, February.
    10. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    11. Domenico Cuoco & Hua He & Sergei Isaenko, 2008. "Optimal Dynamic Trading Strategies with Risk Limits," Operations Research, INFORMS, vol. 56(2), pages 358-368, April.
    12. Gundel, Anne & Weber, Stefan, 2007. "Robust utility maximization with limited downside risk in incomplete markets," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1663-1688, November.
    13. Yiu, K. F. C., 2004. "Optimal portfolios under a value-at-risk constraint," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1317-1334, April.
    14. Hakansson, Nils H, 1970. "Optimal Investment and Consumption Strategies Under Risk for a Class of Utility Functions," Econometrica, Econometric Society, vol. 38(5), pages 587-607, September.
    15. Sanford J. Grossman & Zhongquan Zhou, 1993. "Optimal Investment Strategies For Controlling Drawdowns," Mathematical Finance, Wiley Blackwell, vol. 3(3), pages 241-276, July.
    16. Andrew J. Morton & Stanley R. Pliska, 1995. "Optimal Portfolio Management With Fixed Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 5(4), pages 337-356, October.
    17. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    18. Marianne Akian & Agnès Sulem & Michael I. Taksar, 2001. "Dynamic Optimization of Long‐Term Growth Rate for a Portfolio with Transaction Costs and Logarithmic Utility," Mathematical Finance, Wiley Blackwell, vol. 11(2), pages 153-188, April.
    19. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    20. Detlefsen, Kai & Scandolo, Giacomo, 2005. "Conditional and dynamic convex risk measures," SFB 649 Discussion Papers 2005-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    21. Cheridito, Patrick & Delbaen, Freddy & Kupper, Michael, 2004. "Coherent and convex monetary risk measures for bounded càdlàg processes," Stochastic Processes and their Applications, Elsevier, vol. 112(1), pages 1-22, July.
    22. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    23. Patrick Cheridito & Freddy Delbaen & Michael Kupper, 2005. "Coherent and convex monetary risk measures for unbounded càdlàg processes," Finance and Stochastics, Springer, vol. 9(3), pages 369-387, July.
    24. W. H. Fleming & S. J. Sheu, 2000. "Risk‐Sensitive Control and an Optimal Investment Model," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 197-213, April.
    25. Aase, Knut K. & Øksendal, Bernt, 1988. "Admissible investment strategies in continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 30(2), pages 291-301, December.
    26. David Heath & Hyejin Ku, 2004. "Pareto Equilibria with coherent measures of risk," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 163-172, April.
    27. Arjan Berkelaar & Phornchanok Cumperayot & Roy Kouwenberg, 2002. "The Effect of VaR Based Risk Management on Asset Prices and the Volatility Smile," European Financial Management, European Financial Management Association, vol. 8(2), pages 139-164, June.
    28. Stefan Jaschke & Uwe Küchler, 2001. "Coherent risk measures and good-deal bounds," Finance and Stochastics, Springer, vol. 5(2), pages 181-200.
    29. Susanne Emmer & Claudia Klüppelberg & Ralf Korn, 2001. "Optimal Portfolios with Bounded Capital at Risk," Mathematical Finance, Wiley Blackwell, vol. 11(4), pages 365-384, October.
    30. Thomas M. Cover, 1991. "Universal Portfolios," Mathematical Finance, Wiley Blackwell, vol. 1(1), pages 1-29, January.
    31. Berend Roorda & J. M. Schumacher & Jacob Engwerda, 2005. "Coherent Acceptability Measures In Multiperiod Models," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 589-612, October.
    32. Cuoco, Domenico & Liu, Hong, 2006. "An analysis of VaR-based capital requirements," Journal of Financial Intermediation, Elsevier, vol. 15(3), pages 362-394, July.
    33. Jean-Pierre Fouque & Tracey Andrew Tullie, 2002. "Variance reduction for Monte Carlo simulation in a stochastic volatility environment," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 24-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moreno-Bromberg, Santiago & Pirvu, Traian A. & Réveillac, Anthony, 2011. "CRRA utility maximization under risk constraints," SFB 649 Discussion Papers 2011-043, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Traian A. Pirvu & Gordan Zitkovic, 2007. "Maximizing the Growth Rate under Risk Constraints," Papers 0706.0480, arXiv.org.
    2. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    3. Domenico Cuoco & Hua He & Sergei Isaenko, 2008. "Optimal Dynamic Trading Strategies with Risk Limits," Operations Research, INFORMS, vol. 56(2), pages 358-368, April.
    4. Acciaio, Beatrice & Föllmer, Hans & Penner, Irina, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," LSE Research Online Documents on Economics 50118, London School of Economics and Political Science, LSE Library.
    5. Cheridito, Patrick & Stadje, Mitja, 2009. "Time-inconsistency of VaR and time-consistent alternatives," Finance Research Letters, Elsevier, vol. 6(1), pages 40-46, March.
    6. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    7. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2019. "Time-consistency of risk measures: how strong is such a property?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 287-317, June.
    8. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    9. Alexander S. Cherny, 2009. "Capital Allocation And Risk Contribution With Discrete‐Time Coherent Risk," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 13-40, January.
    10. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2014. "A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time," Papers 1409.7028, arXiv.org, revised Sep 2017.
    11. Roorda Berend & Schumacher Hans, 2013. "Membership conditions for consistent families of monetary valuations," Statistics & Risk Modeling, De Gruyter, vol. 30(3), pages 255-280, August.
    12. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures with fluctuation of market volatility under Bochne-Lebesgue space," Papers 1806.01166, arXiv.org, revised Mar 2024.
    13. Mitja Stadje, 2018. "Representation Results for Law Invariant Recursive Dynamic Deviation Measures and Risk Sharing," Papers 1811.09615, arXiv.org, revised Dec 2018.
    14. Xue Dong He & Hanqing Jin & Xun Yu Zhou, 2015. "Dynamic Portfolio Choice When Risk Is Measured by Weighted VaR," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 773-796, March.
    15. Castaneda, Pablo, 2006. "Long Term Risk Assessment in a Defined Contribution Pension System," MPRA Paper 3347, University Library of Munich, Germany, revised 30 Apr 2007.
    16. Roorda, Berend & Schumacher, J.M., 2011. "The strictest common relaxation of a family of risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 29-34, January.
    17. Daniel Lacker, 2015. "Law invariant risk measures and information divergences," Papers 1510.07030, arXiv.org, revised Jun 2016.
    18. Daniel Bartl, 2016. "Conditional nonlinear expectations," Papers 1612.09103, arXiv.org, revised Mar 2019.
    19. Santiago Moreno-Bromberg & Traian Pirvu & Anthony R'eveillac, 2011. "CRRA Utility Maximization under Risk Constraints," Papers 1106.1702, arXiv.org, revised Mar 2012.
    20. José Vicente & Aloísio Araújo, 2010. "Social Welfare Analysis in a Financial Economy with Risk Regulation," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 12(3), pages 561-586, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:19:y:2009:i:3:p:423-455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.