IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v55y2020i4d10.1007_s10614-018-9858-x.html
   My bibliography  Save this article

Forecasting Short-Term Oil Price with a Generalised Pattern Matching Model Based on Empirical Genetic Algorithm

Author

Listed:
  • Lu-Tao Zhao

    (University of Science and Technology Beijing
    Beijing Institute of Technology)

  • Guan-Rong Zeng

    (University of Science and Technology Beijing)

  • Ling-Yun He

    (JiNan University)

  • Ya Meng

    (University of Science and Technology Beijing)

Abstract

Price is an important guideline for measuring the changes in the oil market. Therefore, the forecasting of oil prices has become an important issue in oil market research. One of the problems, however, is that oil price is a non-linear or chaotic time-series, leading to difficulties in such research. In the forecasting methods commonly used, pattern matching model is a good method because of its simplicity, non-linearity, and accuracy, but when calculating its important input parameters, pattern matching model encounters certain problems in terms of accuracy and stability. In this case, the accuracy of the model prediction results will be affected. In this paper, the loss function is used to detect the source of the complexity of oil price forecast. On the basis of generalised pattern matching model based on genetic algorithm (GPGA), we introduce empirical distribution into genetic algorithm, which can dynamically compare the fitness among populations and tracks changes in individual evolutionary fitness to improve multiple modules. By using these information, directional evolution and full search elements are ensured. Finally, a generalised pattern matching model based on empirical genetic algorithm (GPEGA) is proposed. Empirical studies show that the accuracy and stability of GPEGA are 59.0% and 0.8% higher than that of GPGA. Moreover, the performance is 71.2% and 72.2% better than that of BPNN and ARIMA on mean square error. This study can help decision makers quickly and accurately grasp market information and provide support and reference for decision making on stabilizing economic markets and people’s lives.

Suggested Citation

  • Lu-Tao Zhao & Guan-Rong Zeng & Ling-Yun He & Ya Meng, 2020. "Forecasting Short-Term Oil Price with a Generalised Pattern Matching Model Based on Empirical Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1151-1169, April.
  • Handle: RePEc:kap:compec:v:55:y:2020:i:4:d:10.1007_s10614-018-9858-x
    DOI: 10.1007/s10614-018-9858-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-018-9858-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-018-9858-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Zhihua & Liu, Zhenhua & Zhang, Yuejun & Long, Ruyin, 2017. "The contagion effect of international crude oil price fluctuations on Chinese stock market investor sentiment," Applied Energy, Elsevier, vol. 187(C), pages 27-36.
    2. Jiang, Meihui & An, Haizhong & Jia, Xiaoliang & Sun, Xiaoqi, 2017. "The influence of global benchmark oil prices on the regional oil spot market in multi-period evolution," Energy, Elsevier, vol. 118(C), pages 742-752.
    3. William J. Crowder & Anas Hamed, 1993. "A cointegration test for oil futures market efficiency," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(8), pages 933-941, December.
    4. Liu, Xueyong & An, Haizhong & Huang, Shupei & Wen, Shaobo, 2017. "The evolution of spillover effects between oil and stock markets across multi-scales using a wavelet-based GARCH–BEKK model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 374-383.
    5. Ette Harrison Etuk, 2013. "Seasonal Arima Modelling of Nigerian Monthly Crude Oil Prices," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 3(3), pages 333-340.
    6. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2017. "Oil shocks and stock markets: Dynamic connectedness under the prism of recent geopolitical and economic unrest," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 1-26.
    7. Ette Harrison Etuk, 2013. "Seasonal Arima Modelling of Nigerian Monthly Crude Oil Prices," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 3(3), pages 333-340, March.
    8. Gil-Alana, Luis A., 2001. "A fractionally integrated model with a mean shift for the US and the UK real oil prices," Economic Modelling, Elsevier, vol. 18(4), pages 643-658, December.
    9. Kayalar, Derya Ezgi & Küçüközmen, C. Coşkun & Selcuk-Kestel, A. Sevtap, 2017. "The impact of crude oil prices on financial market indicators: copula approach," Energy Economics, Elsevier, vol. 61(C), pages 162-173.
    10. Zhao, Lu-Tao & Wang, Yi & Guo, Shi-Qiu & Zeng, Guan-Rong, 2018. "A novel method based on numerical fitting for oil price trend forecasting," Applied Energy, Elsevier, vol. 220(C), pages 154-163.
    11. He, Ling-Yun & Chen, Shu-Peng, 2010. "Are crude oil markets multifractal? Evidence from MF-DFA and MF-SSA perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3218-3229.
    12. Zhang, Yue-Jun & Wei, Yi-Ming, 2010. "The crude oil market and the gold market: Evidence for cointegration, causality and price discovery," Resources Policy, Elsevier, vol. 35(3), pages 168-177, September.
    13. Haugom, Erik & Ray, Rina, 2017. "Heterogeneous traders, liquidity, and volatility in crude oil futures market," Journal of Commodity Markets, Elsevier, vol. 5(C), pages 36-49.
    14. Green, Steven L & Mork, Knut Anton, 1991. "Toward Efficiency in the Crude-Oil Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(1), pages 45-66, Jan.-Marc.
    15. Bernabe, Araceli & Martina, Esteban & Alvarez-Ramirez, Jose & Ibarra-Valdez, Carlos, 2004. "A multi-model approach for describing crude oil price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 567-584.
    16. Adrangi, Bahram & Chatrath, Arjun & Dhanda, Kanwalroop Kathy & Raffiee, Kambiz, 2001. "Chaos in oil prices? Evidence from futures markets," Energy Economics, Elsevier, vol. 23(4), pages 405-425, July.
    17. Krzysztof Drachal, 2018. "Determining Time-Varying Drivers of Spot Oil Price in a Dynamic Model Averaging Framework," Energies, MDPI, vol. 11(5), pages 1-24, May.
    18. Jammazi, Rania & Aloui, Chaker, 2012. "Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling," Energy Economics, Elsevier, vol. 34(3), pages 828-841.
    19. Yudong Wang & Chongfeng Wu, 2013. "Efficiency of Crude Oil Futures Markets: New Evidence from Multifractal Detrending Moving Average Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 42(4), pages 393-414, December.
    20. Huang, Lili & Wang, Jun, 2018. "Global crude oil price prediction and synchronization based accuracy evaluation using random wavelet neural network," Energy, Elsevier, vol. 151(C), pages 875-888.
    21. Fan, Liwei & Pan, Sijia & Li, Zimin & Li, Huiping, 2016. "An ICA-based support vector regression scheme for forecasting crude oil prices," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 245-253.
    22. Wang, Jie & Wang, Jun, 2016. "Forecasting energy market indices with recurrent neural networks: Case study of crude oil price fluctuations," Energy, Elsevier, vol. 102(C), pages 365-374.
    23. Fan, Ying & Liang, Qiang & Wei, Yi-Ming, 2008. "A generalized pattern matching approach for multi-step prediction of crude oil price," Energy Economics, Elsevier, vol. 30(3), pages 889-904, May.
    24. Wang, Minggang & Tian, Lixin & Zhou, Peng, 2018. "A novel approach for oil price forecasting based on data fluctuation network," Energy Economics, Elsevier, vol. 71(C), pages 201-212.
    25. Panas, Epaminondas & Ninni, Vassilia, 2000. "Are oil markets chaotic? A non-linear dynamic analysis," Energy Economics, Elsevier, vol. 22(5), pages 549-568, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Drachal & Michał Pawłowski, 2021. "A Review of the Applications of Genetic Algorithms to Forecasting Prices of Commodities," Economies, MDPI, vol. 9(1), pages 1-22, January.
    2. Gharib, Cheima & Mefteh-Wali, Salma & Serret, Vanessa & Ben Jabeur, Sami, 2021. "Impact of COVID-19 pandemic on crude oil prices: Evidence from Econophysics approach," Resources Policy, Elsevier, vol. 74(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
    2. Fan, Ying & Liang, Qiang & Wei, Yi-Ming, 2008. "A generalized pattern matching approach for multi-step prediction of crude oil price," Energy Economics, Elsevier, vol. 30(3), pages 889-904, May.
    3. Zhang, Tingting & Tang, Zhenpeng & Wu, Junchuan & Du, Xiaoxu & Chen, Kaijie, 2021. "Multi-step-ahead crude oil price forecasting based on two-layer decomposition technique and extreme learning machine optimized by the particle swarm optimization algorithm," Energy, Elsevier, vol. 229(C).
    4. Lu-Tao Zhao & Guan-Rong Zeng & Wen-Jing Wang & Zhi-Gang Zhang, 2019. "Forecasting Oil Price Using Web-based Sentiment Analysis," Energies, MDPI, vol. 12(22), pages 1-18, November.
    5. Ghaemi Asl, Mahdi & Adekoya, Oluwasegun Babatunde & Rashidi, Muhammad Mahdi & Ghasemi Doudkanlou, Mohammad & Dolatabadi, Ali, 2022. "Forecast of Bayesian-based dynamic connectedness between oil market and Islamic stock indices of Islamic oil-exporting countries: Application of the cascade-forward backpropagation network," Resources Policy, Elsevier, vol. 77(C).
    6. E, Jianwei & Bao, Yanling & Ye, Jimin, 2017. "Crude oil price analysis and forecasting based on variational mode decomposition and independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 412-427.
    7. Belhassine, Olfa & Karamti, Chiraz, 2021. "Volatility spillovers and hedging effectiveness between oil and stock markets: Evidence from a wavelet-based and structural breaks analysis," Energy Economics, Elsevier, vol. 102(C).
    8. Wang, Bin & Wang, Jun, 2020. "Energy futures and spots prices forecasting by hybrid SW-GRU with EMD and error evaluation," Energy Economics, Elsevier, vol. 90(C).
    9. Godarzi, Ali Abbasi & Amiri, Rohollah Madadi & Talaei, Alireza & Jamasb, Tooraj, 2014. "Predicting oil price movements: A dynamic Artificial Neural Network approach," Energy Policy, Elsevier, vol. 68(C), pages 371-382.
    10. Yu, Hongchu & Fang, Zhixiang & Lu, Feng & Murray, Alan T. & Zhang, Hengcai & Peng, Peng & Mei, Qiang & Chen, Jinhai, 2019. "Impact of oil price fluctuations on tanker maritime network structure and traffic flow changes," Applied Energy, Elsevier, vol. 237(C), pages 390-403.
    11. Xiong, Tao & Bao, Yukun & Hu, Zhongyi, 2013. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices," Energy Economics, Elsevier, vol. 40(C), pages 405-415.
    12. Li, Mingchen & Cheng, Zishu & Lin, Wencan & Wei, Yunjie & Wang, Shouyang, 2023. "What can be learned from the historical trend of crude oil prices? An ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 123(C).
    13. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    14. Wu, Chunying & Wang, Jianzhou & Hao, Yan, 2022. "Deterministic and uncertainty crude oil price forecasting based on outlier detection and modified multi-objective optimization algorithm," Resources Policy, Elsevier, vol. 77(C).
    15. Marcos Álvarez-Díaz, 2020. "Is it possible to accurately forecast the evolution of Brent crude oil prices? An answer based on parametric and nonparametric forecasting methods," Empirical Economics, Springer, vol. 59(3), pages 1285-1305, September.
    16. Kliber, Agata & Łęt, Blanka, 2022. "Degree of connectedness and the transfer of news across the oil market and the European stocks," Energy, Elsevier, vol. 239(PC).
    17. Tabak, Benjamin M. & Cajueiro, Daniel O., 2007. "Are the crude oil markets becoming weakly efficient over time? A test for time-varying long-range dependence in prices and volatility," Energy Economics, Elsevier, vol. 29(1), pages 28-36, January.
    18. Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
    19. Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
    20. García-Carranco, Sergio M. & Bory-Reyes, Juan & Balankin, Alexander S., 2016. "The crude oil price bubbling and universal scaling dynamics of price volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 60-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:55:y:2020:i:4:d:10.1007_s10614-018-9858-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.