Model Selection and Post Selection to Improve the Estimation of the ARCH Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
- Bahadır Yüzbaşı & S. Ejaz Ahmed, 2020. "Ridge Type Shrinkage Estimation of Seemingly Unrelated Regressions And Analytics of Economic and Financial Data from “Fragile Five” Countries," JRFM, MDPI, vol. 13(6), pages 1-19, June.
- Ieva Grublytė & Donatas Surgailis & Andrius Škarnulis, 2017. "QMLE for Quadratic ARCH Model with Long Memory," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(4), pages 535-551, July.
- Raheem, S.M. Enayetur & Ahmed, S. Ejaz & Doksum, Kjell A., 2012. "Absolute penalty and shrinkage estimation in partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 874-891.
- Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(1), pages 107-131, April.
- Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
- Christian Francq & Jean‐Michel Zakoïan, 2012. "Strict Stationarity Testing and Estimation of Explosive and Stationary Generalized Autoregressive Conditional Heteroscedasticity Models," Econometrica, Econometric Society, vol. 80(2), pages 821-861, March.
- Rich, Robert W. & Raymond, Jennie & Butler, J. S., 1991. "Generalized instrumental variables estimation of autoregressive conditional heteroskedastic models," Economics Letters, Elsevier, vol. 35(2), pages 179-185, February.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
- Todd, Prono, 2010. "Simple GMM Estimation of the Semi-Strong GARCH(1,1) Model," MPRA Paper 20034, University Library of Munich, Germany.
- Mailand, Wilhelm, 1998. "Zum Einfluß von Unsicherheit auf die gesamtwirtschaftliche Investitionstätigkeit," HWWA Discussion Papers 57, Hamburg Institute of International Economics (HWWA).
- Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013.
"Econometric modeling of exchange rate volatility and jumps,"
Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427,
Edward Elgar Publishing.
- Deniz Erdemlioglu & Sebastien Laurent & Christopher J. Neely, 2012. "Econometric modeling of exchange rate volatility and jumps," Working Papers 2012-008, Federal Reserve Bank of St. Louis.
- Mailand, Wilhelm, 1998. "Zum Einfluss von Unsicherheit auf die gesamtwirtschaftliche Investitionstatigkeit," Discussion Paper Series 26305, Hamburg Institute of International Economics.
- Gonzalez-Rivera, Gloria & Drost, Feike C., 1999.
"Efficiency comparisons of maximum-likelihood-based estimators in GARCH models,"
Journal of Econometrics, Elsevier, vol. 93(1), pages 93-111, November.
- Gonzalez-Rivera, G. & Drost, F.C., 1998. "Efficiency comparisons of maximum likelihood-based estimators in garch models," Other publications TiSEM d93a8be0-5dcd-4ae8-9eb1-b, Tilburg University, School of Economics and Management.
- Gonzalez-Rivera, G. & Drost, F.C., 1998. "Efficiency comparisons of maximum likelihood-based estimators in garch models," Discussion Paper 1998-124, Tilburg University, Center for Economic Research.
- Gonzalez-Rivera, G. & Drost, F.C., 1998. "Efficiency comparisons of maximum likelihood-based estimators in garch models," Other publications TiSEM 7a28bbc8-e8d6-4dbe-874e-5, Tilburg University, School of Economics and Management.
- Gonzalez-Rivera, G. & Drost, F.C., 1998. "Efficiency comparisons of maximum likelihood-based estimators in garch models," Discussion Paper 1998-124, Tilburg University, Center for Economic Research.
- Yusaku Nishimura & Yoshiro Tsutsui & Kenjiro Hirayama, 2016.
"The Chinese Stock Market Does not React to the Japanese Market: Using Intraday Data to Analyse Return and Volatility Spillover Effects,"
The Japanese Economic Review, Springer, vol. 67(3), pages 280-294, September.
- Yusaku Nishimura & Yoshiro Tsutsui & Kenjiro Hirayama, 2016. "The Chinese Stock Market Does not React to the Japanese Market: Using Intraday Data to Analyse Return and Volatility Spillover Effects," The Japanese Economic Review, Japanese Economic Association, vol. 67(3), pages 280-294, September.
- Palmitesta Paola & Provasi Corrado, 2004. "GARCH-type Models with Generalized Secant Hyperbolic Innovations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-19, May.
- Meitz, Mika & Saikkonen, Pentti, 2011.
"Parameter Estimation In Nonlinear Ar–Garch Models,"
Econometric Theory, Cambridge University Press, vol. 27(6), pages 1236-1278, December.
- Mika Meitz & Pentti Saikkonen, 2008. "Parameter estimation in nonlinear AR-GARCH models," CREATES Research Papers 2008-30, Department of Economics and Business Economics, Aarhus University.
- Mika Meitz & Pentti Saikkonen, 2008. "Parameter estimation in nonlinear AR-GARCH models," Economics Series Working Papers 396, University of Oxford, Department of Economics.
- Mika Meitz & Pentti Saikkonen, 2010. "Parameter estimation in nonlinear AR–GARCH models," Koç University-TUSIAD Economic Research Forum Working Papers 1002, Koc University-TUSIAD Economic Research Forum.
- Mika Meitz & Pentti Saikkonen, 2008. "Parameter Estimation in Nonlinear AR-GARCH Models," Economics Working Papers ECO2008/25, European University Institute.
- LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521779654, November.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, January.
- Bronka Rzepkowski, 2001. "Pouvoir prédictif de la volatilité implicite dans le prix des options de change," Économie et Prévision, Programme National Persée, vol. 148(2), pages 71-97.
- Xuejie Feng & Chiping Zhang, 2020. "A Perturbation Method to Optimize the Parameters of Autoregressive Conditional Heteroscedasticity Model," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 1021-1044, March.
- Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
- Hafner, Christian M. & Preminger, Arie, 2015.
"An ARCH model without intercept,"
Economics Letters, Elsevier, vol. 129(C), pages 13-17.
- Christian M. HAFNER & Arie PREMINGER, 2015. "An ARCH Model Without Intercept," LIDAM Reprints CORE 2770, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Hafner, Christian & Preminger, Arie, 2015. "An ARCH model without intercept," LIDAM Reprints ISBA 2015039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Ghysels, E. & Harvey, A. & Renault, E., 1995.
"Stochastic Volatility,"
Papers
95.400, Toulouse - GREMAQ.
- Ghysels, E. & Harvey, A. & Renault, E., 1996. "Stochastic Volatility," Cahiers de recherche 9613, Universite de Montreal, Departement de sciences economiques.
- Ghysels, E. & Harvey, A. & Renault, E., 1996. "Stochastic Volatility," Cahiers de recherche 9613, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Eric Ghysels & Andrew Harvey & Eric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
- GHYSELS, Eric & HARVEY, Andrew & RENAULT, Eric, 1995. "Stochastic Volatility," LIDAM Discussion Papers CORE 1995069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
- Todd Prono, 2009.
"Market proxies, correlation, and relative mean-variance efficiency: still living with the roll critique,"
Supervisory Research and Analysis Working Papers
QAU09-3, Federal Reserve Bank of Boston.
- Todd, Prono, 2009. "Market Proxies, Correlation, and Relative Mean-Variance Efficiency: Still Living with the Roll Critique," MPRA Paper 20031, University Library of Munich, Germany.
- Zaffaroni, Paolo & d'Italia, Banca, 2003.
"Gaussian inference on certain long-range dependent volatility models,"
Journal of Econometrics, Elsevier, vol. 115(2), pages 199-258, August.
- Paolo Zaffaroni, 2003. "Gaussian inference on certain long-range dependent volatility models," Temi di discussione (Economic working papers) 472, Bank of Italy, Economic Research and International Relations Area.
- Nour Meddahi & Eric Renault, 1998.
"Quadratic M-Estimators for ARCH-Type Processes,"
CIRANO Working Papers
98s-29, CIRANO.
- MEDDAHI, Nour & RENAULT, Éric, 1998. "Quadratic M-Estimators for ARCH-Type Processes," Cahiers de recherche 9814, Universite de Montreal, Departement de sciences economiques.
More about this item
Keywords
ARCH; heteroscedastic; financial markets; residuals bootstrapping; pretest; shrinkage;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:15:y:2022:i:4:p:174-:d:790626. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.