IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v12y2019i4p157-d271066.html
   My bibliography  Save this article

Correcting the Bias in the Practitioner Black-Scholes Method

Author

Listed:
  • Yun Yin

    (School of Business, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau)

  • Peter G. Moffatt

    (School of Economics, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK)

Abstract

We address a number of technical problems with the popular Practitioner Black-Scholes (PBS) method for valuing options. The method amounts to a two-stage procedure in which fitted values of implied volatilities (IV) from a linear regression are plugged into the Black-Scholes formula to obtain predicted option prices. Firstly we ensure that the prediction from stage one is positive by using log-linear regression. Secondly, we correct the bias that results from the transformation applied to the fitted values (i.e., the Black-Scholes formula) being a highly non-linear function of implied volatility. We apply the smearing technique in order to correct this bias. An alternative means of implementing the PBS approach is to use the market option price as the dependent variable and estimate the parameters of the IV equation by the method of non-linear least squares (NLLS). A problem we identify with this method is one of model incoherency: the IV equation that is estimated does not correspond to the set of option prices used to estimate it. We use the Monte Carlo method to verify that (1) standard PBS gives biased option values, both in-sample and out-of-sample; (2) using standard (log-linear) PBS with smearing almost completely eliminates the bias; (3) NLLS gives biased option values, but the bias is less severe than with standard PBS. We are led to conclude that, of the range of possible approaches to implementing PBS, log-linear PBS with smearing is preferred on the basis that it is the only approach that results in valuations with negligible bias.

Suggested Citation

  • Yun Yin & Peter G. Moffatt, 2019. "Correcting the Bias in the Practitioner Black-Scholes Method," JRFM, MDPI, vol. 12(4), pages 1-12, September.
  • Handle: RePEc:gam:jjrfmx:v:12:y:2019:i:4:p:157-:d:271066
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/12/4/157/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/12/4/157/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    2. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    3. Christoffersen, Peter & Jacobs, Kris, 2004. "The importance of the loss function in option valuation," Journal of Financial Economics, Elsevier, vol. 72(2), pages 291-318, May.
    4. Panayiotis Andreou & Chris Charalambous & Spiros Martzoukos, 2014. "Assessing the performance of symmetric and asymmetric implied volatility functions," Review of Quantitative Finance and Accounting, Springer, vol. 42(3), pages 373-397, April.
    5. repec:bla:jfinan:v:53:y:1998:i:6:p:2059-2106 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hailiang & Sattar, Muhammad Atif & Wang, Haijun, 2024. "Uncertainty measure: As a proxy for the degree of market imperfection," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 159-171.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    2. José Valentim Machado Vicente & Jaqueline Terra Moura Marins, 2019. "A Volatility Smile-Based Uncertainty Index," Working Papers Series 502, Central Bank of Brazil, Research Department.
    3. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    4. Back, Janis & Prokopczuk, Marcel & Rudolf, Markus, 2013. "Seasonality and the valuation of commodity options," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 273-290.
    5. Jitka Hilliard & Wei Li, 2014. "Volatilities implied by price changes in the S&P 500 options and futures contracts," Review of Quantitative Finance and Accounting, Springer, vol. 42(4), pages 599-626, May.
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. Ilze Kalnina & Dacheng Xiu, 2017. "Nonparametric Estimation of the Leverage Effect: A Trade-Off Between Robustness and Efficiency," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 384-396, January.
    8. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    9. Dennis Bams & Thorsten Lehnert & Christian C. P. Wolff, 2009. "Loss Functions in Option Valuation: A Framework for Selection," Management Science, INFORMS, vol. 55(5), pages 853-862, May.
    10. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    11. Mencía, Javier & Sentana, Enrique, 2013. "Valuation of VIX derivatives," Journal of Financial Economics, Elsevier, vol. 108(2), pages 367-391.
    12. José Valentim Machado Vicente & Jaqueline Terra Moura Marins, 2021. "A volatility smile-based uncertainty index," Annals of Finance, Springer, vol. 17(2), pages 231-246, June.
    13. Du Du & Dan Luo, 2019. "The Pricing of Jump Propagation: Evidence from Spot and Options Markets," Management Science, INFORMS, vol. 67(5), pages 2360-2387, May.
    14. Thibaut Moyaert & Mikael Petitjean, 2011. "The performance of popular stochastic volatility option pricing models during the subprime crisis," Applied Financial Economics, Taylor & Francis Journals, vol. 21(14), pages 1059-1068.
    15. Bent Jesper Christensen & Morten Ø. Nielsen & Thomas Busch, 2005. "Forecasting Exchange Rate Volatility In The Presence Of Jumps," Working Paper 1187, Economics Department, Queen's University.
    16. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.
    17. Ying Chang & Yiming Wang & Sumei Zhang, 2021. "Option Pricing under Double Heston Jump-Diffusion Model with Approximative Fractional Stochastic Volatility," Mathematics, MDPI, vol. 9(2), pages 1-10, January.
    18. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.
    19. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    20. repec:qut:auncer:2012_11 is not listed on IDEAS
    21. Jiang, George J. & Oomen, Roel C.A., 2008. "Testing for jumps when asset prices are observed with noise-a "swap variance" approach," Journal of Econometrics, Elsevier, vol. 144(2), pages 352-370, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:12:y:2019:i:4:p:157-:d:271066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.