IDEAS home Printed from https://ideas.repec.org/a/gam/jijfss/v3y2015i3p411-422d55403.html
   My bibliography  Save this article

A Soft Intelligent Risk Evaluation Model for Credit Scoring Classification

Author

Listed:
  • Mehdi Khashei

    (Department of Industrial Engineering, Isfahan University of Technology (IUT), Isfahan 84156-83111, Iran)

  • Akram Mirahmadi

    (Department of Industrial Engineering, Isfahan University of Technology (IUT), Isfahan 84156-83111, Iran)

Abstract

Risk management is one of the most important branches of business and finance. Classification models are the most popular and widely used analytical group of data mining approaches that can greatly help financial decision makers and managers to tackle credit risk problems. However, the literature clearly indicates that, despite proposing numerous classification models, credit scoring is often a difficult task. On the other hand, there is no universal credit-scoring model in the literature that can be accurately and explanatorily used in all circumstances. Therefore, the research for improving the efficiency of credit-scoring models has never stopped. In this paper, a hybrid soft intelligent classification model is proposed for credit-scoring problems. In the proposed model, the unique advantages of the soft computing techniques are used in order to modify the performance of the traditional artificial neural networks in credit scoring. Empirical results of Australian credit card data classifications indicate that the proposed hybrid model outperforms its components, and also other classification models presented for credit scoring. Therefore, the proposed model can be considered as an appropriate alternative tool for binary decision making in business and finance, especially in high uncertainty conditions.

Suggested Citation

  • Mehdi Khashei & Akram Mirahmadi, 2015. "A Soft Intelligent Risk Evaluation Model for Credit Scoring Classification," IJFS, MDPI, vol. 3(3), pages 1-12, September.
  • Handle: RePEc:gam:jijfss:v:3:y:2015:i:3:p:411-422:d:55403
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7072/3/3/411/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7072/3/3/411/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wiginton, John C., 1980. "A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(3), pages 757-770, September.
    2. Capotorti, Andrea & Barbanera, Eva, 2012. "Credit scoring analysis using a fuzzy probabilistic rough set model," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 981-994.
    3. Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
    4. David Durand, 1941. "Risk Elements in Consumer Instalment Financing," NBER Books, National Bureau of Economic Research, Inc, number dura41-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sunghyon Kyeong & Daehee Kim & Jinho Shin, 2021. "Can System Log Data Enhance the Performance of Credit Scoring?—Evidence from an Internet Bank in Korea," Sustainability, MDPI, vol. 14(1), pages 1-12, December.
    2. Brkic, Sabina & Hodzic, Migdat & Dzanic, Enis, 2018. "Soft Data Modeling via Type 2 Fuzzy Distributions for Corporate Credit Risk Assessment in Commercial Banking," MPRA Paper 87652, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    2. Marco Locurcio & Francesco Tajani & Pierluigi Morano & Debora Anelli & Benedetto Manganelli, 2021. "Credit Risk Management of Property Investments through Multi-Criteria Indicators," Risks, MDPI, vol. 9(6), pages 1-23, June.
    3. Ting Sun & Miklos A. Vasarhelyi, 2018. "Predicting credit card delinquencies: An application of deep neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 25(4), pages 174-189, October.
    4. Fernandes, Guilherme Barreto & Artes, Rinaldo, 2016. "Spatial dependence in credit risk and its improvement in credit scoring," European Journal of Operational Research, Elsevier, vol. 249(2), pages 517-524.
    5. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    6. Rafał Balina & Marta Idasz-Balina, 2021. "Drivers of Individual Credit Risk of Retail Customers—A Case Study on the Example of the Polish Cooperative Banking Sector," Risks, MDPI, vol. 9(12), pages 1-26, December.
    7. Petr Jakubík & Petr Teplý, 2011. "The JT Index as an Indicator of Financial Stability of Corporate Sector," Prague Economic Papers, Prague University of Economics and Business, vol. 2011(2), pages 157-176.
    8. Liu, Yi & Yang, Menglong & Wang, Yudong & Li, Yongshan & Xiong, Tiancheng & Li, Anzhe, 2022. "Applying machine learning algorithms to predict default probability in the online credit market: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 79(C).
    9. Lili Li & Jun Yang & Xin Zou, 2016. "A study of credit risk of Chinese listed companies: ZPP versus KMV," Applied Economics, Taylor & Francis Journals, vol. 48(29), pages 2697-2710, June.
    10. Salihu, Armend & Shehu, Visar, 2020. "A Review of Algorithms for Credit Risk Analysis," Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference (2020), Virtual Conference, in: Proceedings of the ENTRENOVA - ENTerprise REsearch InNOVAtion Conference, Virtual Conference, 10-12 September 2020, pages 134-146, IRENET - Society for Advancing Innovation and Research in Economy, Zagreb.
    11. TOBBACK, Ellen & MARTENS, David, 2017. "Retail credit scoring using fine-grained payment data," Working Papers 2017011, University of Antwerp, Faculty of Business and Economics.
    12. Li, Huan & Wu, Weixing, 2024. "Loan default predictability with explainable machine learning," Finance Research Letters, Elsevier, vol. 60(C).
    13. Fernandes, Guilherme Barreto & Artes , Rinaldo, 2013. "Spatial correlation in credit risk and its improvement in credit scoring," Insper Working Papers wpe_321, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    14. Yang, Yingxu, 2007. "Adaptive credit scoring with kernel learning methods," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1521-1536, December.
    15. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    16. Li, Yibei & Wang, Ximei & Djehiche, Boualem & Hu, Xiaoming, 2020. "Credit scoring by incorporating dynamic networked information," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1103-1112.
    17. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Post-Print halshs-01314553, HAL.
    18. Thomas Wainwright, 2011. "Elite Knowledges: Framing Risk and the Geographies of Credit," Environment and Planning A, , vol. 43(3), pages 650-665, March.
    19. Zhang, Zhiwang & Gao, Guangxia & Shi, Yong, 2014. "Credit risk evaluation using multi-criteria optimization classifier with kernel, fuzzification and penalty factors," European Journal of Operational Research, Elsevier, vol. 237(1), pages 335-348.
    20. Aneta Dzik-Walczak & Mateusz Heba, 2019. "A comparison of credit scoring techniques in Peer-to-Peer lending," Working Papers 2019-16, Faculty of Economic Sciences, University of Warsaw.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijfss:v:3:y:2015:i:3:p:411-422:d:55403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.