IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v249y2016i2p517-524.html
   My bibliography  Save this article

Spatial dependence in credit risk and its improvement in credit scoring

Author

Listed:
  • Fernandes, Guilherme Barreto
  • Artes, Rinaldo

Abstract

Credit scoring models are important tools in the credit granting process. These models measure the credit risk of a prospective client based on idiosyncratic variables and macroeconomic factors. However, small and medium sized enterprises (SMEs) are subject to the effects of the local economy. From a data set with the localization and default information of 9 million Brazilian SMEs, provided by Serasa Experian (the largest Brazilian credit bureau), we propose a measure of the local risk of default based on the application of ordinary kriging. This variable has been included in logistic credit scoring models as an explanatory variable. These models have shown better performance when compared to models without this variable. A gain around 7 percentage points of KS and Gini was observed.

Suggested Citation

  • Fernandes, Guilherme Barreto & Artes, Rinaldo, 2016. "Spatial dependence in credit risk and its improvement in credit scoring," European Journal of Operational Research, Elsevier, vol. 249(2), pages 517-524.
  • Handle: RePEc:eee:ejores:v:249:y:2016:i:2:p:517-524
    DOI: 10.1016/j.ejor.2015.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715006463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jos魍ar𨁍ontero-Lorenzo & Beatriz Larraz-Iribas, 2012. "Space-time approach to commercial property prices valuation," Applied Economics, Taylor & Francis Journals, vol. 44(28), pages 3705-3715, October.
    2. Giesecke, Kay & Weber, Stefan, 2006. "Credit contagion and aggregate losses," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 741-767, May.
    3. Wiginton, John C., 1980. "A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(3), pages 757-770, September.
    4. Barro, Diana & Basso, Antonella, 2010. "Credit contagion in a network of firms with spatial interaction," European Journal of Operational Research, Elsevier, vol. 205(2), pages 459-468, September.
    5. D. J. Hand & W. E. Henley, 1997. "Statistical Classification Methods in Consumer Credit Scoring: a Review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 523-541, September.
    6. Zambaldi, Felipe & Aranha, Francisco & Lopes, Hedibert & Politi, Ricardo, 2011. "Credit granting to small firms: A Brazilian case," Journal of Business Research, Elsevier, vol. 64(3), pages 309-315, March.
    7. Eric Rosenberg & Alan Gleit, 1994. "Quantitative Methods in Credit Management: A Survey," Operations Research, INFORMS, vol. 42(4), pages 589-613, August.
    8. Steven C. Bourassa & Eva Cantoni & Martin Hoesli, 2010. "Predicting House Prices with Spatial Dependence: A Comparison of Alternative Methods," Journal of Real Estate Research, American Real Estate Society, vol. 32(2), pages 139-160.
    9. Gary A. Dymski, 2006. "Discrimination in the Credit and Housing Markets: Findings and Challenges," Chapters, in: William M. Rodgers III (ed.), Handbook on the Economics of Discrimination, chapter 8, Edward Elgar Publishing.
    10. David Durand, 1941. "Risk Elements in Consumer Instalment Financing," NBER Books, National Bureau of Economic Research, Inc, number dura41-1.
    11. Orgler, Yair E, 1970. "A Credit Scoring Model for Commercial Loans," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 2(4), pages 435-445, November.
    12. Mohamed Bilel Triki & Samir Maktouf, 2012. "Financial Liberalization and Banking Crisis: A Spatial Panel Model," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 2(3), pages 1-5.
    13. Dubin, Robin A., 1992. "Spatial autocorrelation and neighborhood quality," Regional Science and Urban Economics, Elsevier, vol. 22(3), pages 433-452, September.
    14. Anjali Kumar & Ajai Nair & Adam Parsons & Eduardo Urdapilleta, 2006. "Expanding Bank Outreach through Retail Partnerships : Correspondent Banking in Brazil," World Bank Publications - Books, The World Bank Group, number 7038.
    15. Peter Kolesar & Janet L. Showers, 1985. "A Robust Credit Screening Model Using Categorical Data," Management Science, INFORMS, vol. 31(2), pages 123-133, February.
    16. Sumit Agarwal, 2010. "Distance and Private Information in Lending," The Review of Financial Studies, Society for Financial Studies, vol. 23(7), pages 2757-2788, July.
    17. David Durand, 1941. "Risk Elements in Consumer Instalment Financing, Technical Edition," NBER Books, National Bureau of Economic Research, Inc, number dura41-2.
    18. Stefan Weber & Kay Giesecke, 2003. "Credit Contagion and Aggregate Losses," Computing in Economics and Finance 2003 246, Society for Computational Economics.
    19. Scalera, Domenico & Zazzaro, Alberto, 2001. "Group reputation and persistent (or permanent) discrimination in credit markets," Journal of Multinational Financial Management, Elsevier, vol. 11(4-5), pages 483-496, December.
    20. Sumit Agarwal & Brent W. Ambrose & Souphala Chomsisengphet & Anthony B. Sanders, 2012. "Thy Neighbor’s Mortgage: Does Living in a Subprime Neighborhood Affect One’s Probability of Default?," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 40(1), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernandes, Guilherme Barreto & Artes , Rinaldo, 2013. "Spatial correlation in credit risk and its improvement in credit scoring," Insper Working Papers wpe_321, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    2. Thomas Wainwright, 2011. "Elite Knowledges: Framing Risk and the Geographies of Credit," Environment and Planning A, , vol. 43(3), pages 650-665, March.
    3. Raffaella Calabrese & Galina Andreeva & Jake Ansell, 2019. "“Birds of a Feather” Fail Together: Exploring the Nature of Dependency in SME Defaults," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 71-84, January.
    4. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    5. Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
    6. Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
    7. Rayo Cantón, Salvador & Lara Rubio, Juan & Camino Blasco, David, 2010. "A Credit Scoring Model For Institutions Of Microfinance Under The Basel Ii Normative," Journal of Economics, Finance and Administrative Science, Universidad ESAN, vol. 15(28), pages 89-124.
    8. Yang, Yingxu, 2007. "Adaptive credit scoring with kernel learning methods," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1521-1536, December.
    9. Edirisinghe, Chanaka & Gupta, Aparna & Roth, Wendy, 2015. "Risk assessment based on the analysis of the impact of contagion flow," Journal of Banking & Finance, Elsevier, vol. 60(C), pages 209-223.
    10. Calabrese, Raffaella & Crook, Jonathan, 2020. "Spatial contagion in mortgage defaults: A spatial dynamic survival model with time and space varying coefficients," European Journal of Operational Research, Elsevier, vol. 287(2), pages 749-761.
    11. Rais Ahmad Itoo & A. Selvarasu & José António Filipe, 2015. "Loan Products and Credit Scoring by Commercial Banks (India)," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 5(1), pages 851-851.
    12. Przemys{l}aw Biecek & Marcin Chlebus & Janusz Gajda & Alicja Gosiewska & Anna Kozak & Dominik Ogonowski & Jakub Sztachelski & Piotr Wojewnik, 2021. "Enabling Machine Learning Algorithms for Credit Scoring -- Explainable Artificial Intelligence (XAI) methods for clear understanding complex predictive models," Papers 2104.06735, arXiv.org.
    13. Rafał Balina & Marta Idasz-Balina, 2021. "Drivers of Individual Credit Risk of Retail Customers—A Case Study on the Example of the Polish Cooperative Banking Sector," Risks, MDPI, vol. 9(12), pages 1-26, December.
    14. Petr Jakubík & Petr Teplý, 2011. "The JT Index as an Indicator of Financial Stability of Corporate Sector," Prague Economic Papers, Prague University of Economics and Business, vol. 2011(2), pages 157-176.
    15. Büşra Alma Çallı & Erman Coşkun, 2021. "A Longitudinal Systematic Review of Credit Risk Assessment and Credit Default Predictors," SAGE Open, , vol. 11(4), pages 21582440211, November.
    16. Lili Li & Jun Yang & Xin Zou, 2016. "A study of credit risk of Chinese listed companies: ZPP versus KMV," Applied Economics, Taylor & Francis Journals, vol. 48(29), pages 2697-2710, June.
    17. TOBBACK, Ellen & MARTENS, David, 2017. "Retail credit scoring using fine-grained payment data," Working Papers 2017011, University of Antwerp, Faculty of Business and Economics.
    18. Li, Huan & Wu, Weixing, 2024. "Loan default predictability with explainable machine learning," Finance Research Letters, Elsevier, vol. 60(C).
    19. Doruk Şen & Cem Çağrı Dönmez & Umman Mahir Yıldırım, 0. "A Hybrid Bi-level Metaheuristic for Credit Scoring," Information Systems Frontiers, Springer, vol. 0, pages 1-11.
    20. Finlay, Steven, 2011. "Multiple classifier architectures and their application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 210(2), pages 368-378, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:249:y:2016:i:2:p:517-524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.