IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i5p3943-d1077492.html
   My bibliography  Save this article

N-Source Determines Barley Productivity, Nutrient Accumulation, and Grain Quality in Cyprus Rainfed Agricultural Systems

Author

Listed:
  • Michalis Omirou

    (Department of Agrobiotechnology, Agricultural Research Institute, P.O. Box 22016, Nicosia 1516, Cyprus)

  • Dionysia Fasoula

    (Department of Plant Breeding, Agricultural Research Institute, P.O. Box 22016, Nicosia 1516, Cyprus)

  • Marinos Stylianou

    (Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus, Giannou Kranidioti 89, Latsia, Nicosia 2231, Cyprus)

  • Antonis A. Zorpas

    (Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus, Giannou Kranidioti 89, Latsia, Nicosia 2231, Cyprus)

  • Ioannis M. Ioannides

    (Department of Agrobiotechnology, Agricultural Research Institute, P.O. Box 22016, Nicosia 1516, Cyprus)

Abstract

The Eastern Mediterranean and Middle East (EMME) region is already experiencing the negative effects of increased temperatures and the increase in prolonged drought periods. The use of organic fertilization could be a valuable tool to meet the main challenges of climate change and maintain the productivity, quality, and sustainability of rainfed agricultural ecosystems. In the current study, we compare the effect of manure, compost, and chemical fertilization (NH 4 NO 3 ) on barley grain and straw yield in a field study for three consecutive growing seasons. The hypothesis that the barley productivity, nutrient accumulation, and grain quality remain similar among the different nutrient management strategies was tested. The results showed that both growing season and type of nutrient source significantly affected barley grain and straw yield (F 6,96 = 13.57, p < 0.01). The lowest productivity was noticed in the non-fertilized plots while chemical and organic fertilization exhibited similar grain yield, ranging from 2 to 3.4 t/ha throughout the growing seasons. For straw, the use of compost had no effect on the yield in any of the growing seasons examined. The use of manure and compost had a significant effect on grain macro- and micronutrient content but this was highly related to growing season. Principal component analysis (PCA) clearly demonstrated the discrimination of the different type of fertilization on barley performance during the course of the study, while the application of compost was highly associated with an increase in micronutrients in grain samples. Furthermore, structural equational modeling (SEM) showed that both chemical and organic fertilization had a direct positive effect on macro- (r = 0.44, p < 0.01) and micronutrient (r = 0.88, p < 0.01) content of barley grain and a positive indirect effect on barley productivity through N accumulation in grain (β = 0.15, p = 0.007). The current study showed that barley grain and straw yield was similar between manure and NH 4 NO 3 treatments, while compost exhibited a residual positive effect causing an increase in grain yield during the growing season. The results highlight that N fertilization under rainfed conditions is beneficial to barley productivity through its indirect effects on N accumulation in grain and straw, while it improves grain quality through the increased accumulation of micronutrients.

Suggested Citation

  • Michalis Omirou & Dionysia Fasoula & Marinos Stylianou & Antonis A. Zorpas & Ioannis M. Ioannides, 2023. "N-Source Determines Barley Productivity, Nutrient Accumulation, and Grain Quality in Cyprus Rainfed Agricultural Systems," IJERPH, MDPI, vol. 20(5), pages 1-12, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:5:p:3943-:d:1077492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/5/3943/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/5/3943/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aiguo Dai, 2013. "Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(1), pages 52-58, January.
    2. Aiguo Dai, 2013. "Erratum: Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(2), pages 171-171, February.
    3. Ould Ahmed, B.A. & Inoue, M. & Moritani, S., 2010. "Effect of saline water irrigation and manure application on the available water content, soil salinity, and growth of wheat," Agricultural Water Management, Elsevier, vol. 97(1), pages 165-170, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Ortiz & María Rosa Yagüe & Alcira Sunilda Valdez & María Gabriela Molina & Àngela Dolores Bosch-Serra, 2024. "Sustainability of Organic Fertilizers Use in Dryland Mediterranean Agriculture," Agriculture, MDPI, vol. 14(8), pages 1-18, August.
    2. Katarína Olšovská & Oksana Sytar & Peter Kováčik, 2024. "Optimizing Nitrogen Application for Enhanced Barley Resilience: A Comprehensive Study on Drought Stress and Nitrogen Supply for Sustainable Agriculture," Sustainability, MDPI, vol. 16(5), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    2. Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    3. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    4. Gilles Dufrénot & William Ginn & Marc Pourroy, 2023. "ENSO Climate Patterns on Global Economic Conditions," AMSE Working Papers 2308, Aix-Marseille School of Economics, France.
    5. Dingcai Yin & Xiaohua Gou & Haijiang Yang & Kai Wang & Jie Liu & Yiran Zhang & Linlin Gao, 2023. "Elevation-dependent tree growth response to recent warming and drought on eastern Tibetan Plateau," Climatic Change, Springer, vol. 176(6), pages 1-18, June.
    6. Adeline Bichet & Arona Diedhiou & Benoit Hingray & Guillaume Evin & N’Datchoh Evelyne Touré & Klutse Nana Ama Browne & Kouakou Kouadio, 2020. "Assessing uncertainties in the regional projections of precipitation in CORDEX-AFRICA," Climatic Change, Springer, vol. 162(2), pages 583-601, September.
    7. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Yu, Chaoqing & Huang, Xiao & Chen, Han & Huang, Guorui & Ni, Shaoqiang & Wright, Jonathon S. & Hall, Jim & Ciais, Philippe & Zhang, Jie & Xiao, Yuchen & Sun, Zhanli & Wang, Xuhui & Yu, Le, 2018. "Assessing the impacts of extreme agricultural droughts in China under climate and socioeconomic changes," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 6, pages 689-703.
    9. Ding, Yugang & Xu, Jiangmin, 2023. "Global vulnerability of agricultural commodities to climate risk: Evidence from satellite data," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 669-687.
    10. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    11. Sergio M. Vicente-Serrano & Miquel Tomas-Burguera & Santiago Beguería & Fergus Reig & Borja Latorre & Marina Peña-Gallardo & M. Yolanda Luna & Ana Morata & José C. González-Hidalgo, 2017. "A High Resolution Dataset of Drought Indices for Spain," Data, MDPI, vol. 2(3), pages 1-10, June.
    12. Jinquan Li & Junmin Pei & Changming Fang & Bo Li & Ming Nie, 2024. "Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Bláhová, Monika & Fischer, Milan & Poděbradská, Markéta & Štěpánek, Petr & Balek, Jan & Zahradníček, Pavel & Kudláčková, Lucie & Žalud, Zdeněk & Trnka, Miroslav, 2024. "Testing the reliability of soil moisture forecast for its use in agriculture," Agricultural Water Management, Elsevier, vol. 304(C).
    15. Parisa Paymard & Mohammad Bannayan & Reza Sadrabadi Haghighi, 2018. "Analysis of the climate change effect on wheat production systems and investigate the potential of management strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1237-1255, April.
    16. Marco Sannolo & Miguel Angel Carretero, 2019. "Dehydration constrains thermoregulation and space use in lizards," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-17, July.
    17. Zhiyuan Xiang & Meifang Zhao & U. S. Ogbodo, 2020. "Accumulation of Urban Insect Pests in China: 50 Years’ Observations on Camphor Tree ( Cinnamomum camphora )," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    18. Andrew M. Linke & Frank D. W. Witmer & John O’Loughlin, 2020. "Do people accurately report droughts? Comparison of instrument-measured and national survey data in Kenya," Climatic Change, Springer, vol. 162(3), pages 1143-1160, October.
    19. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    20. Jieming Chou & Tian Xian & Wenjie Dong & Yuan Xu, 2018. "Regional Temporal and Spatial Trends in Drought and Flood Disasters in China and Assessment of Economic Losses in Recent Years," Sustainability, MDPI, vol. 11(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:5:p:3943-:d:1077492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.