IDEAS home Printed from https://ideas.repec.org/p/hal/spmain/hal-03389325.html
   My bibliography  Save this paper

The accountability imperative for quantifiying the uncertainty of emission forecasts : evidence from Mexico

Author

Listed:
  • Daniel Puig

    (UNEP - United Nations Environmental Programme - UNESCO)

  • Oswaldo Morales-Nápoles

    (TNO - The Netherlands Organisation for Applied Scientific Research, TU Delft - Delft University of Technology, TU Delft - Delft University of Technology, Department of Civil Engineering and Geosciences [Delft] - TU Delft - Delft University of Technology)

  • Fatemeh Bakhtiari
  • Gissela Landa

    (OFCE - Observatoire français des conjonctures économiques (Sciences Po) - Sciences Po - Sciences Po)

Abstract

Governmental climate change mitigation targets are typically developed with the aid of forecasts of greenhouse-gas emissions. The robustness and credibility of such forecasts depends, among other issues, on the extent to which forecasting approaches can reflect prevailing uncertainties. We apply a transparent and replicable method to quantify the uncertainty associated with projections of gross domestic product growth rates for Mexico, a key driver of greenhouse-gas emissions in the country. We use those projections to produce probabilistic forecasts of greenhouse-gas emissions for Mexico. We contrast our probabilistic forecasts with Mexico's governmental deterministic forecasts. We show that, because they fail to reflect such key uncertainty, deterministic forecasts are ill-suited for use in target-setting processes. We argue that (i) guidelines should be agreed upon, to ensure that governmental forecasts meet certain minimum transparency and quality standards, and (ii) governments should be held accountable for the appropriateness of the forecasting approach applied to prepare governmental forecasts, especially when those forecasts are used to derive climate change mitigation targets.

Suggested Citation

  • Daniel Puig & Oswaldo Morales-Nápoles & Fatemeh Bakhtiari & Gissela Landa, 2017. "The accountability imperative for quantifiying the uncertainty of emission forecasts : evidence from Mexico," SciencePo Working papers Main hal-03389325, HAL.
  • Handle: RePEc:hal:spmain:hal-03389325
    Note: View the original document on HAL open archive server: https://sciencespo.hal.science/hal-03389325
    as

    Download full text from publisher

    File URL: https://sciencespo.hal.science/hal-03389325/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    2. Hanea, Anca & Morales Napoles, Oswaldo & Ababei, Dan, 2015. "Non-parametric Bayesian networks: Improving theory and reviewing applications," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 265-284.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Puig & Oswaldo Morales-Nápoles & Fatemeh Bakhtiari & Gissela Landa, 2017. "The accountability imperative for quantifiying the uncertainty of emission forecasts : evidence from Mexico," Working Papers hal-03389325, HAL.
    2. repec:spo:wpmain:info:hdl:2441/5cu79nktr182k9k26ecvt6f8p2 is not listed on IDEAS
    3. Daniel PUIG & Oswaldo Morales-Napoles & Fatemeh Bakhtiari & Gissela Landa Rivera, 2017. "The accountability imperative for quantifying the uncertainty of emission forecasts : evidence from Mexico," Documents de Travail de l'OFCE 2017-17, Observatoire Francais des Conjonctures Economiques (OFCE).
    4. repec:hal:spmain:info:hdl:2441/5cu79nktr182k9k26ecvt6f8p2 is not listed on IDEAS
    5. Dominik Paprotny & Heidi Kreibich & Oswaldo Morales-Nápoles & Dennis Wagenaar & Attilio Castellarin & Francesca Carisi & Xavier Bertin & Bruno Merz & Kai Schröter, 2021. "A probabilistic approach to estimating residential losses from different flood types," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2569-2601, February.
    6. Jie Huang & Haiming Zhou & Nader Ebrahimi, 2022. "Bayesian Bivariate Cure Rate Models Using Copula Functions," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(3), pages 1-9, May.
    7. Bedoui, Rihab & Braiek, Sana & Guesmi, Khaled & Chevallier, Julien, 2019. "On the conditional dependence structure between oil, gold and USD exchange rates: Nested copula based GJR-GARCH model," Energy Economics, Elsevier, vol. 80(C), pages 876-889.
    8. Okhrin, Ostap & Ristig, Alexander, 2014. "Hierarchical Archimedean Copulae: The HAC Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i04).
    9. Wu, Shaomin, 2014. "Construction of asymmetric copulas and its application in two-dimensional reliability modelling," European Journal of Operational Research, Elsevier, vol. 238(2), pages 476-485.
    10. Katarzyna Baran-Gurgul, 2022. "The Risk of Extreme Streamflow Drought in the Polish Carpathians—A Two-Dimensional Approach," IJERPH, MDPI, vol. 19(21), pages 1-27, October.
    11. Luca Riccetti, 2013. "A copula–GARCH model for macro asset allocation of a portfolio with commodities," Empirical Economics, Springer, vol. 44(3), pages 1315-1336, June.
    12. Wanling Huang & Artem Prokhorov, 2014. "A Goodness-of-fit Test for Copulas," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 751-771, October.
    13. Kleinow, Jacob & Moreira, Fernando, 2016. "Systemic risk among European banks: A copula approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 42(C), pages 27-42.
    14. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
    15. Emmanoulides, Christos & Fousekis, Panos, 2014. "Vertical Price Transmission in the US Pork Industry: Evidence from Copula Models," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 15(1), pages 1-12.
    16. Peter Grundke & Kamil Pliszka, 2018. "A macroeconomic reverse stress test," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 1093-1130, May.
    17. Kelly, Robert & McCarthy, Yvonne & McQuinn, Kieran, 2012. "Impairment and negative equity in the Irish mortgage market," Journal of Housing Economics, Elsevier, vol. 21(3), pages 256-268.
    18. Hobæk Haff, Ingrid, 2012. "Comparison of estimators for pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 91-105.
    19. Can, S.U. & Einmahl, John & Laeven, R.J.A., 2020. "Goodness-of-fit testing for copulas: A distribution-free approach," Other publications TiSEM 211b2be9-b46e-41e2-9b95-1, Tilburg University, School of Economics and Management.
    20. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    21. Song, Yupeng & Basu, Biswajit & Zhang, Zili & Sørensen, John Dalsgaard & Li, Jie & Chen, Jianbing, 2021. "Dynamic reliability analysis of a floating offshore wind turbine under wind-wave joint excitations via probability density evolution method," Renewable Energy, Elsevier, vol. 168(C), pages 991-1014.
    22. Aloui, Riadh & Gupta, Rangan & Miller, Stephen M., 2016. "Uncertainty and crude oil returns," Energy Economics, Elsevier, vol. 55(C), pages 92-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:spmain:hal-03389325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Contact - Sciences Po Departement of Economics (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.