IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i3p666-d1329893.html
   My bibliography  Save this article

Biohythane, Biogas, and Biohydrogen Production from Food Waste: Recent Advancements, Technical Bottlenecks, and Prospects

Author

Listed:
  • Shivali Sahota

    (Engineering Department, Niccolò Cusano University, Via Don Carlo Gnocchi 3, 00166 Rome, Italy)

  • Subodh Kumar

    (Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India)

  • Lidia Lombardi

    (Engineering Department, Niccolò Cusano University, Via Don Carlo Gnocchi 3, 00166 Rome, Italy)

Abstract

Food waste (FW) is a significant global issue with a carbon footprint of 3.3 billion tonnes (Bt), primarily generated due to improper food supply chain management, storage issues, and transportation problems. Acidogenic processes like dark fermentation, anaerobic digestion, and a combination of DF-AD can produce renewable biofuels (Bio-CH 4 , Bio-H 2 ) by valorising FW, aligning with the UN SDGs. FW is an ideal substrate for acidogenic processes due to its high moisture content, organic matter, and biodegradability. However, the choice of FW valorisation pathways depends on energy yield, conversion efficiency, and cost effectiveness. Acidogenic processes are not economically viable for industrial scale FW treatment due to reduced energy recovery from stand-alone processes. So, this study reviews comparative studies on biogas, biohydrogen, and biohythane production from FW via acidogenic processes, focusing on energy yield, energy recovery, and environmental and economic impact to provide a clear understanding of energy recovery and yield from all acidogenic processes. Additionally, this review also explores the recent advancements in digestate slurry management and the synergistic effects of AD and HTC processes. Lastly, a futuristic integrated bio-thermo-chemical process is proposed for maximum energy recovery, valuing food waste to energy vectors (Bio-H 2 , Bio-CH 4 , and hydro-char) along with digestate management and biofertilizer production.

Suggested Citation

  • Shivali Sahota & Subodh Kumar & Lidia Lombardi, 2024. "Biohythane, Biogas, and Biohydrogen Production from Food Waste: Recent Advancements, Technical Bottlenecks, and Prospects," Energies, MDPI, vol. 17(3), pages 1-27, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:666-:d:1329893
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/3/666/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/3/666/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Latika Bhatia & Harit Jha & Tanushree Sarkar & Prakash Kumar Sarangi, 2023. "Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review," IJERPH, MDPI, vol. 20(3), pages 1-20, January.
    2. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    3. Chen, Wei-Hsin & Lin, Yu-Ying & Liu, Hsuah-Cheng & Chen, Teng-Chien & Hung, Chun-Hung & Chen, Chi-Hui & Ong, Hwai Chyuan, 2019. "A comprehensive analysis of food waste derived liquefaction bio-oil properties for industrial application," Applied Energy, Elsevier, vol. 237(C), pages 283-291.
    4. Byun, Jaewon & Han, Jee-hoon, 2023. "Economic feasible hydrogen production system from carbohydrate-rich food waste," Applied Energy, Elsevier, vol. 340(C).
    5. Abdur Rawoof, Salma Aathika & Kumar, P. Senthil & Vo, Dai-Viet N. & Devaraj, Thiruselvi & Subramanian, Sivanesan, 2021. "Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Valdez-Vazquez, Idania & Poggi-Varaldo, Héctor M., 2009. "Hydrogen production by fermentative consortia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1000-1013, June.
    7. Joanna Mikusińska & Monika Kuźnia & Klaudia Czerwińska & Małgorzata Wilk, 2023. "Hydrothermal Carbonization of Digestate Produced in the Biogas Production Process," Energies, MDPI, vol. 16(14), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Wang & Leonid Melnyk & Oleksandra Kubatko & Bohdan Kovalov & Luc Hens, 2023. "Economic and Technological Efficiency of Renewable Energy Technologies Implementation," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    2. Rose Daphnee Tchonkouang & Helen Onyeaka & Taghi Miri, 2023. "From Waste to Plate: Exploring the Impact of Food Waste Valorisation on Achieving Zero Hunger," Sustainability, MDPI, vol. 15(13), pages 1-21, July.
    3. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    4. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Meng, Qiaorong & Wang, Lei & Lu, Yang, 2023. "Thermal maturity and chemical structure evolution of lump long-flame coal during superheated water vapor–based in situ pyrolysis," Energy, Elsevier, vol. 263(PC).
    5. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    6. Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    7. Abdur Rawoof, Salma Aathika & Kumar, P. Senthil & Vo, Dai-Viet N. & Devaraj, Thiruselvi & Subramanian, Sivanesan, 2021. "Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Elfarra, Barakat & Yasmeen, Rizwana & Shah, Wasi Ul Hassan, 2024. "The impact of energy security, energy mix, technological advancement, trade openness, and political stability on energy efficiency: Evidence from Arab countries," Energy, Elsevier, vol. 295(C).
    9. Hagreaves Kumba & Oludolapo A. Olanrewaju & Ratidzo Pasipamire, 2024. "Integration of Renewable Energy Technologies for Sustainable Development in South Africa: A Focus on Grid-Connected PV Systems," Energies, MDPI, vol. 17(12), pages 1-22, June.
    10. Si, Buchun & Watson, Jamison & Wang, Zixin & Wang, Tengfei & Acero Triana, Juan S. & Zhang, Yuanhui, 2024. "Storage stability of biocrude oil fractional distillates derived from the hydrothermal liquefaction of food waste," Renewable Energy, Elsevier, vol. 220(C).
    11. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Bernardas Vaznonis & Gunta Grīnberga-Zālīte, 2023. "The Relationship between Energy Consumption and Economic Growth in the Baltic Countries’ Agriculture: A Non-Linear Framework," Energies, MDPI, vol. 16(5), pages 1-22, February.
    12. Junqiu Fan & Jing Zhang & Long Yuan & Rujing Yan & Yu He & Weixing Zhao & Nang Nin, 2024. "Deep Low-Carbon Economic Optimization Using CCUS and Two-Stage P2G with Multiple Hydrogen Utilizations for an Integrated Energy System with a High Penetration Level of Renewables," Sustainability, MDPI, vol. 16(13), pages 1-20, July.
    13. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Alexander Prosekov & Olga Kriger & Vyacheslav Dolganyuk, 2022. "Bioengineering and Molecular Biology of Miscanthus," Energies, MDPI, vol. 15(14), pages 1-14, July.
    14. Aniza, Ria & Chen, Wei-Hsin & Lin, Yu-Ying & Tran, Khanh-Quang & Chang, Jo-Shu & Lam, Su Shiung & Park, Young-Kwon & Kwon, Eilhann E. & Tabatabaei, Meisam, 2021. "Independent parallel pyrolysis kinetics of extracted proteins and lipids as well as model carbohydrates in microalgae," Applied Energy, Elsevier, vol. 300(C).
    15. Gulhane, Madhuri & Pandit, Prabhakar & Khardenavis, Anshuman & Singh, Dharmesh & Purohit, Hemant, 2017. "Study of microbial community plasticity for anaerobic digestion of vegetable waste in Anaerobic Baffled Reactor," Renewable Energy, Elsevier, vol. 101(C), pages 59-66.
    16. Simona Domazetovska & Vladimir Strezov & Risto V. Filkoski & Tao Kan, 2023. "Exploring the Potential of Biomass Pyrolysis for Renewable and Sustainable Energy Production: A Comparative Study of Corn Cob, Vine Rod, and Sunflower," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    17. Ćalasan, Martin & Abdel Aleem, Shady H.E. & Hasanien, Hany M. & Alaas, Zuhair M. & Ali, Ziad M., 2023. "An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function," Energy, Elsevier, vol. 264(C).
    18. Grzegorz Pełka & Marta Jach-Nocoń & Marcin Paprocki & Artur Jachimowski & Wojciech Luboń & Adam Nocoń & Mateusz Wygoda & Paweł Wyczesany & Przemysław Pachytel & Tomasz Mirowski, 2023. "Comparison of Emissions and Efficiency of Two Types of Burners When Burning Wood Pellets from Different Suppliers," Energies, MDPI, vol. 16(4), pages 1-18, February.
    19. Chen, Wei & Fang, Yang & Li, Kaixu & Chen, Zhiqun & Xia, Mingwei & Gong, Meng & Chen, Yingquan & Yang, Haiping & Tu, Xin & Chen, Hanping, 2020. "Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products," Applied Energy, Elsevier, vol. 260(C).
    20. Gottardo, Marco & Micolucci, Federico & Bolzonella, David & Uellendahl, Hinrich & Pavan, Paolo, 2017. "Pilot scale fermentation coupled with anaerobic digestion of food waste - Effect of dynamic digestate recirculation," Renewable Energy, Elsevier, vol. 114(PB), pages 455-463.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:666-:d:1329893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.