IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i2p984-d1026022.html
   My bibliography  Save this article

Prevalence of Multidrug-Resistant Bacteria (Enteropathogens) Recovered from a Blend of Pig Manure and Pinewood Saw Dust during Anaerobic Co-Digestion in a Steel Biodigester

Author

Listed:
  • Christy Echakachi Manyi-Loh

    (Centre of Applied Food Sustainability and Biotechnology (CAFSaB), Central University of Technology, Bloemfontein 9301, South Africa)

  • Anthony Ifeanyin Okoh

    (SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
    Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates)

  • Ryk Lues

    (Centre of Applied Food Sustainability and Biotechnology (CAFSaB), Central University of Technology, Bloemfontein 9301, South Africa)

Abstract

South Africa adopts intensive livestock farming, embracing the employment of huge quantities of antibiotics to meet the increased demand for meat. Therefore, bacteria occurring in the animal products and manure might develop antibiotic resistance, a scenario which threatens public health. The study investigated the occurrence of Gram-negative bacteria from eighteen pooled samples withdrawn from a single-stage steel biodigester co-digesting pig manure (75%) and pine wood saw dust (25%). The viable counts for each bacterium were determined using the spread plate technique. The bacterial isolates were characterised based on cultural, morphological and biochemical characteristics, using the Analytical Profile Index 20 e test kit. In addition, isolates were characterised based on susceptibility to 14 conventional antibiotics via the disc diffusion method. The MAR index was calculated for each bacterial isolate. The bacterial counts ranged from 10 4 to 10 6 cfu/mL, indicating manure as a potential source of contamination. Overall, 159 bacterial isolates were recovered, which displayed diverse susceptibility patterns with marked sensitivity to amoxicillin (100% E . coli ), streptomycin (96.15% for Yersinia spp.; 93.33% for Salmonella spp.) and 75% Campylobacter spp. to nitrofurantoin. Varying resistance rates were equally observed, but a common resistance was demonstrated to erythromycin (100% of Salmonella and Yersinia spp.), 90.63% of E . coli and 78.57% of Campylobacter spp . A total of 91.19% of the bacterial isolates had a MAR index > 0.2, represented by 94 MAR phenotypes. The findings revealed multidrug resistance in bacteria from the piggery source, suggesting they can contribute immensely to the spread of multidrug resistance; thus, it serves as a pointer to the need for the enforcement of regulatory antibiotic use in piggery farms. Therefore, to curb the level of multidrug resistance, the piggery farm should implement control measures in the study area.

Suggested Citation

  • Christy Echakachi Manyi-Loh & Anthony Ifeanyin Okoh & Ryk Lues, 2023. "Prevalence of Multidrug-Resistant Bacteria (Enteropathogens) Recovered from a Blend of Pig Manure and Pinewood Saw Dust during Anaerobic Co-Digestion in a Steel Biodigester," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:2:p:984-:d:1026022
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/2/984/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/2/984/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christy E. Manyi-Loh & Sampson N. Mamphweli & Edson L. Meyer & Anthony I. Okoh & Golden Makaka & Michael Simon, 2014. "Inactivation of Selected Bacterial Pathogens in Dairy Cattle Manure by Mesophilic Anaerobic Digestion (Balloon Type Digester)," IJERPH, MDPI, vol. 11(7), pages 1-11, July.
    2. Jiang, Y. & Xie, S.H. & Dennehy, C. & Lawlor, P.G. & Hu, Z.H. & Wu, G.X. & Zhan, X.M. & Gardiner, G.E., 2020. "Inactivation of pathogens in anaerobic digestion systems for converting biowastes to bioenergy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    3. Claas Kirchhelle, 2018. "Pharming animals: a global history of antibiotics in food production (1935–2017)," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rose Daphnee Tchonkouang & Helen Onyeaka & Taghi Miri, 2023. "From Waste to Plate: Exploring the Impact of Food Waste Valorisation on Achieving Zero Hunger," Sustainability, MDPI, vol. 15(13), pages 1-21, July.
    2. Nicolas Fortané, 2021. "Antimicrobial resistance: preventive approaches to the rescue? Professional expertise and business model of French “industrial” veterinarians," Review of Agricultural, Food and Environmental Studies, Springer, vol. 102(2), pages 213-238, June.
    3. Xiaojun Liu & Thomas Lendormi & Jean-Louis Lanoisellé, 2021. "Conventional and Innovative Hygienization of Feedstock for Biogas Production: Resistance of Indicator Bacteria to Thermal Pasteurization, Pulsed Electric Field Treatment, and Anaerobic Digestion," Energies, MDPI, vol. 14(7), pages 1-20, March.
    4. Hall, Julie & Hawkins, Olivia & Montgomery, Amy & Singh, Saniya & Mullan, Judy & Degeling, Chris, 2022. "Dismantling antibiotic infrastructures in residential aged care: The invisible work of antimicrobial stewardship (AMS)," Social Science & Medicine, Elsevier, vol. 305(C).
    5. Charlotte Brives & Jessica Pourraz, 2020. "Phage therapy as a potential solution in the fight against AMR: obstacles and possible futures," Palgrave Communications, Palgrave Macmillan, vol. 6(1), pages 1-11, December.
    6. Andrea Butcher & Jose A. Cañada & Salla Sariola, 2021. "How to make noncoherent problems more productive: Towards an AMR management plan for low resource livestock sectors," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-10, December.
    7. Ma, Guiling & Chen, Yanting & Ndegwa, Pius, 2022. "Anaerobic digestion process deactivates major pathogens in biowaste: A meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Camille Bellet & Lindsay Hamilton & Jonathan Rushton, 2021. "Re-thinking public health: Towards a new scientific logic of routine animal health care in European industrial farming," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-11, December.
    9. Christy E. Manyi-Loh & Sampson N. Mamphweli & Edson L. Meyer & Golden Makaka & Michael Simon & Anthony I. Okoh, 2016. "An Overview of the Control of Bacterial Pathogens in Cattle Manure," IJERPH, MDPI, vol. 13(9), pages 1-27, August.
    10. Wang, Zhongzhong & Hu, Yuansheng & Wang, Shun & Wu, Guangxue & Zhan, Xinmin, 2023. "A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    11. Fortané, Nicolas, 2020. "Antimicrobial resistance: preventive approaches to the rescue? Professional expertise and business model of French “industrial” veterinarians," Review of Agricultural, Food and Environmental Studies, Institut National de la Recherche Agronomique (INRA), vol. 102(1), January.
    12. Charuta M. Parkhi & Lenis Saweda O. Liverpool‐Tasie & Thomas Reardon, 2023. "Do smaller chicken farms use more antibiotics? Evidence of antibiotic diffusion from Nigeria," Agribusiness, John Wiley & Sons, Ltd., vol. 39(1), pages 242-262, January.
    13. Alexandra Waluszewski & Alessandro Cinti & Andrea Perna, 2021. "Antibiotics in pig meat production: restrictions as the odd case and overuse as normality? Experiences from Sweden and Italy," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-12, December.
    14. Usmani, Zeba & Sharma, Minaxi & Karpichev, Yevgen & Pandey, Ashok & Chander Kuhad, Ramesh & Bhat, Rajeev & Punia, Rajesh & Aghbashlo, Mortaza & Tabatabaei, Meisam & Gupta, Vijai Kumar, 2020. "Advancement in valorization technologies to improve utilization of bio-based waste in bioeconomy context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Kgomotso Lebelo & Ntsoaki Malebo & Mokgaotsa Jonas Mochane & Muthoni Masinde, 2021. "Chemical Contamination Pathways and the Food Safety Implications along the Various Stages of Food Production: A Review," IJERPH, MDPI, vol. 18(11), pages 1-23, May.
    16. Beugre, Etienne Yves-Martial & Gnagne, Théophile, 2024. "Viscosity influence on kinetics parameters in dry anaerobic digestion," Renewable Energy, Elsevier, vol. 221(C).
    17. Hannah Landecker, 2019. "Antimicrobials before antibiotics: war, peace, and disinfectants," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-11, December.
    18. Nicolas Fortané, 2019. "Veterinarian ‘responsibility’: conflicts of definition and appropriation surrounding the public problem of antimicrobial resistance in France," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-12, December.
    19. Campo, Giuseppe & Cerutti, Alberto & Zanetti, Mariachiara & De Ceglia, Margherita & Scibilia, Gerardo & Ruffino, Barbara, 2023. "A modelling approach for the assessment of energy recovery and impact on the water line of sludge pre-treatments," Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:2:p:984-:d:1026022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.