Author
Listed:
- Álvarez-Fraga, Laura
- Capson-Tojo, Gabriel
- Sanglier, Malo
- Hamelin, Jérôme
- Escudié, Renaud
- Wéry, Nathalie
- García-Bernet, Diana
- Battimelli, Audrey
- Guilayn, Felipe
Abstract
Anaerobic digestion (AD)-derived digestate can be used as an organic fertilizer or for soil amendment. However, its utilization for resource recovery raises valid biosafety concerns. Despite extensive research on the capacity of AD for pathogen reduction, the variability in results poses challenges for drawing definitive conclusions. To address this lack of unification, results from 121 scientific articles were compiled, and a comprehensive meta-analysis was conducted. Findings indicate that artificial pathogen spiking leads to performance overestimation. Current most common indicators represent accurately their respective microbial groups. Clostridiaceae are barely affected by AD and may be favored by some pre-treatment technologies. The impact of operational parameters and the coupling of pre- and post-treatments with AD on pathogen reduction was also investigated. While an optimal batch duration was identified, the hydraulic retention time in (semi)continuous systems did not affect the overall pathogen reduction. Heat-based post-treatments coupled with thermophilic AD resulted in the highest pathogen reductions, fulfilling legislations. Unprecedented statistical analyses allowed categorizing quantitatively key parameters. Results confirmed that temperature is the most relevant parameter. Thermophilic conditions resulted in the highest pathogen reductions, while psychrophilic and mesophilic temperatures showed similar performances. The impact of pH on pathogen removal was confirmed, with acidic and basic values enhancing pathogen reductions. More research considering all AD products within a multicriteria optimization approach (e.g., pathogen reduction, biogas production, and digestate quality) is needed to determine optimal conditions considering all aspects. This study provides novel and relevant conclusions for AD at research and industrial scale, drawing several R&D perspectives.
Suggested Citation
Álvarez-Fraga, Laura & Capson-Tojo, Gabriel & Sanglier, Malo & Hamelin, Jérôme & Escudié, Renaud & Wéry, Nathalie & García-Bernet, Diana & Battimelli, Audrey & Guilayn, Felipe, 2025.
"A meta-analysis of pathogen reduction data in anaerobic digestion,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
Handle:
RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124007081
DOI: 10.1016/j.rser.2024.114982
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124007081. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.