IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v274y2023ics0360544223007491.html
   My bibliography  Save this article

A modelling approach for the assessment of energy recovery and impact on the water line of sludge pre-treatments

Author

Listed:
  • Campo, Giuseppe
  • Cerutti, Alberto
  • Zanetti, Mariachiara
  • De Ceglia, Margherita
  • Scibilia, Gerardo
  • Ruffino, Barbara

Abstract

A simple, easy-to-use, first-order model was elaborated to predict the methane production and the release of ammoniacal nitrogen (N–NH3) to the digestate in full-scale anaerobic digestion (AD) processes. The study used long-term, semi-continuous AD tests, carried out with samples of primary sludge (PS), raw waste activated sludge (WAS), WAS after a thermo-alkali pre-treatment (90 °C, 90 min, 4 g NaOH/100 g TS) and mixed sludge (PS/treated WAS), to calibrate and validate the model. The results of both the experimental activities and the phase of model tuning demonstrated that the proposed model was capable to provide reliable information to completely characterize the AD process, thus overcoming the limitations due to discontinuity of experimental tests. Furthermore, it was demonstrated that low-temperature thermo-alkali pre-treatments could increase the values of the model parameters, namely methane production after an infinite time (B0, +70%) and hydrolysis constant (k, +450%), and made them comparable to those obtained by the application of commercial, high-energy demanding treatments (e.g. Cambi). Finally, the issue concerning the release of N–NH3 to digestate was deemed to be very worthy to being investigated because, after pre-treatments, the cost for nitrogen removal in the water line, through the traditional processes of nitrification – denitrification, could increase even by 140%.

Suggested Citation

  • Campo, Giuseppe & Cerutti, Alberto & Zanetti, Mariachiara & De Ceglia, Margherita & Scibilia, Gerardo & Ruffino, Barbara, 2023. "A modelling approach for the assessment of energy recovery and impact on the water line of sludge pre-treatments," Energy, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:energy:v:274:y:2023:i:c:s0360544223007491
    DOI: 10.1016/j.energy.2023.127355
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223007491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tamang, Phurba & Tyagi, Vinay Kumar & Gunjyal, Neelam & Rahmani, Ali Mohammad & Singh, Rajesh & Kumar, Pradeep & Ahmed, Banafsha & Tyagi, Pooja & Banu, Rajesh & Varjani, Sunita & Kazmi, A.A., 2023. "Free nitrous acid (FNA) pretreatment enhances biomethanation of lignocellulosic agro-waste (wheat straw)," Energy, Elsevier, vol. 264(C).
    2. Kim, Gi-Beom & Cayetano, Roent Dune A. & Park, Jungsu & Jo, Yura & Jeong, Seong Yeob & Lee, Myung Yeol & Pandey, Ashok & Kim, Sang-Hyoun, 2022. "Impact of thermal pretreatment on anaerobic digestion of dewatered sludge from municipal and industrial wastewaters and its economic feasibility," Energy, Elsevier, vol. 254(PB).
    3. Capson-Tojo, G. & Moscoviz, R. & Astals, S. & Robles, Á. & Steyer, J.-P., 2020. "Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    4. Liu, Jin & Smith, Stephen R., 2020. "A multi-level biogas model to optimise the energy balance of full-scale sewage sludge conventional and THP anaerobic digestion," Renewable Energy, Elsevier, vol. 159(C), pages 756-766.
    5. Ruffino, Barbara & Cerutti, Alberto & Campo, Giuseppe & Scibilia, Gerardo & Lorenzi, Eugenio & Zanetti, Mariachiara, 2020. "Thermophilic vs. mesophilic anaerobic digestion of waste activated sludge: Modelling and energy balance for its applicability at a full scale WWTP," Renewable Energy, Elsevier, vol. 156(C), pages 235-248.
    6. Fiore, S. & Ruffino, B. & Campo, G. & Roati, C. & Zanetti, M.C., 2016. "Scale-up evaluation of the anaerobic digestion of food-processing industrial wastes," Renewable Energy, Elsevier, vol. 96(PA), pages 949-959.
    7. Zhen, Guangyin & Lu, Xueqin & Kato, Hiroyuki & Zhao, Youcai & Li, Yu-You, 2017. "Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 559-577.
    8. Abdel daiem, Mahmoud M. & Hatata, Ahmed & Said, Noha, 2022. "Modeling and optimization of semi-continuous anaerobic co-digestion of activated sludge and wheat straw using Nonlinear Autoregressive Exogenous neural network and seagull algorithm," Energy, Elsevier, vol. 241(C).
    9. Jiang, Y. & Xie, S.H. & Dennehy, C. & Lawlor, P.G. & Hu, Z.H. & Wu, G.X. & Zhan, X.M. & Gardiner, G.E., 2020. "Inactivation of pathogens in anaerobic digestion systems for converting biowastes to bioenergy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferrer, Ivet & Passos, Fabiana & Romero, Eva & Vázquez, Felícitas & Font, Xavier, 2024. "Optimising sewage sludge anaerobic digestion for resource recovery in wastewater treatment plants," Renewable Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Capua, Francesco & Spasiano, Danilo & Giordano, Andrea & Adani, Fabrizio & Fratino, Umberto & Pirozzi, Francesco & Esposito, Giovanni, 2020. "High-solid anaerobic digestion of sewage sludge: challenges and opportunities," Applied Energy, Elsevier, vol. 278(C).
    2. Nicola Di Costanzo & Alessandra Cesaro & Francesco Di Capua & Giovanni Esposito, 2021. "Exploiting the Nutrient Potential of Anaerobically Digested Sewage Sludge: A Review," Energies, MDPI, vol. 14(23), pages 1-25, December.
    3. Wang, Zhongzhong & Hu, Yuansheng & Wang, Shun & Wu, Guangxue & Zhan, Xinmin, 2023. "A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    4. Wang, Hui & Zeng, Shufang & Pan, Xiaoli & Liu, Lei & Chen, Yunjie & Tang, Jiawei & Luo, Feng, 2022. "Bioelectrochemically assisting anaerobic digestion enhanced methane production under low-temperature," Renewable Energy, Elsevier, vol. 194(C), pages 1071-1083.
    5. Rose Daphnee Tchonkouang & Helen Onyeaka & Taghi Miri, 2023. "From Waste to Plate: Exploring the Impact of Food Waste Valorisation on Achieving Zero Hunger," Sustainability, MDPI, vol. 15(13), pages 1-21, July.
    6. Christy Echakachi Manyi-Loh & Anthony Ifeanyin Okoh & Ryk Lues, 2023. "Prevalence of Multidrug-Resistant Bacteria (Enteropathogens) Recovered from a Blend of Pig Manure and Pinewood Saw Dust during Anaerobic Co-Digestion in a Steel Biodigester," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    7. Bi, Shaojie & Westerholm, Maria & Hu, Wanrong & Mahdy, Ahmed & Dong, Taili & Sun, Yingcai & Qiao, Wei & Dong, Renjie, 2021. "The metabolic performance and microbial communities of anaerobic digestion of chicken manure under stressed ammonia condition: A case study of a 10-year successful biogas plant," Renewable Energy, Elsevier, vol. 167(C), pages 644-651.
    8. Huang, Bao-Cheng & He, Chuan-Shu & Fan, Nian-Si & Jin, Ren-Cun & Yu, Han-Qing, 2020. "Envisaging wastewater-to-energy practices for sustainable urban water pollution control: Current achievements and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Chen, Yi-di & Li, Suping & Ho, Shih-Hsin & Wang, Chengyu & Lin, Yen-Chang & Nagarajan, Dillirani & Chang, Jo-Shu & Ren, Nan-qi, 2018. "Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 76-90.
    10. Garcia, Natalia Herrero & Mattioli, Andrea & Gil, Aida & Frison, Nicola & Battista, Federico & Bolzonella, David, 2019. "Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 1-10.
    11. Meng, Xingyao & Wang, Qingping & Zhao, Xixi & Cai, Yafan & Ma, Xuguang & Fu, Jingyi & Wang, Pan & Wang, Yongjing & Liu, Wei & Ren, Lianhai, 2023. "A review of the technologies used for preserving anaerobic digestion inoculum," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Mahsa Nabizadeh Mashizi & Mohammad Hossein Bagheripour & Mohammad Mostafa Jafari & Ehsan Yaghoubi, 2023. "Mechanical and Microstructural Properties of a Stabilized Sand Using Geopolymer Made of Wastes and a Natural Pozzolan," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    13. Cristiane Romio & Michael Vedel Wegener Kofoed & Henrik Bjarne Møller, 2021. "Digestate Post-Treatment Strategies for Additional Biogas Recovery: A Review," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
    14. Li, Pengfei & Cheng, Chongbo & Guo, Rui & Yu, Ran & Jiao, Youzhou & Shen, Dekui & He, Chao, 2022. "Interactions among the components of artificial biomass during their anaerobic digestion with and without sewage sludge," Energy, Elsevier, vol. 261(PB).
    15. Ruffino, Barbara & Cerutti, Alberto & Campo, Giuseppe & Scibilia, Gerardo & Lorenzi, Eugenio & Zanetti, Mariachiara, 2019. "Improvement of energy recovery from the digestion of waste activated sludge (WAS) through intermediate treatments: The effect of the hydraulic retention time (HRT) of the first-stage digestion," Applied Energy, Elsevier, vol. 240(C), pages 191-204.
    16. Hosseini Koupaie, E. & Lin, L. & Bazyar Lakeh, A.A. & Azizi, A. & Dhar, B.R. & Hafez, H. & Elbeshbishy, E., 2021. "Performance evaluation and microbial community analysis of mesophilic and thermophilic sludge fermentation processes coupled with thermal hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Yu, Lu & Yuan, Haiping & Zhu, Nanwen & Shen, Yanwen, 2021. "How does choline change methanogenesis pathway in anaerobic digestion of waste activated sludge?," Energy, Elsevier, vol. 224(C).
    18. Magdalena Budych-Gorzna & Beata Szatkowska & Lukasz Jaroszynski & Bjarne Paulsrud & Ewelina Jankowska & Tymoteusz Jaroszynski & Piotr Oleskowicz-Popiel, 2021. "Towards an Energy Self-Sufficient Resource Recovery Facility by Improving Energy and Economic Balance of a Municipal WWTP with Chemically Enhanced Primary Treatment," Energies, MDPI, vol. 14(5), pages 1-17, March.
    19. Yin, Changkai & Shen, Yanwen & Zhu, Nanwen & Huang, Qiujie & Lou, Ziyang & Yuan, Haiping, 2018. "Anaerobic digestion of waste activated sludge with incineration bottom ash: Enhanced methane production and CO2 sequestration," Applied Energy, Elsevier, vol. 215(C), pages 503-511.
    20. Siqi Zuo & Xiaoqin Zhou & Zifu Li & Xuemei Wang & Longbin Yu, 2021. "Investigation on Recycling Dry Toilet Generated Blackwater by Anaerobic Digestion: From Energy Recovery to Sanitation," Sustainability, MDPI, vol. 13(8), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:274:y:2023:i:c:s0360544223007491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.