IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i19p6833-d1247939.html
   My bibliography  Save this article

Informing ASR Treatment Practices in a Florida Aquifer through a Human Health Risk Approach

Author

Listed:
  • Anna Gitter

    (Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center-Houston School of Public Health, Houston, TX 77030, USA)

  • Kristina D. Mena

    (Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center-Houston School of Public Health, Houston, TX 77030, USA)

  • John T. Lisle

    (U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL 33701, USA)

Abstract

Aquifer storage and recovery (ASR) can augment water supplies and hydrologic flows under varying climatic conditions. However, imposing drinking water regulations on ASR practices, including pre-treatment before injection into the aquifer, remains arguable. Microbial inactivation data— Escherichia coli , Pseudomonas aeruginosa , poliovirus type 1 and Cryptosporidium parvum —were used in a human health risk assessment to identify how the storage time of recharged water in the Floridan Aquifer enhances pathogen inactivation, thereby mitigating the human health risks associated with ingestion. We used a quantitative microbial risk assessment to evaluate the risks for a gastrointestinal infection (GI) and the associated disability-adjusted life years (DALYs) per person per year. The risk of developing a GI infection for drinking water no longer exceeded the suggested annual risk threshold (1 × 10 −4 ) by days 31, 1, 52 and 80 for each pathogen, respectively. DALYs per person per year no longer exceeded the World Health Organization threshold (1 × 10 −6 ) by days 27, <1, 43 and 72. In summary, storage time in the aquifer yields a significant reduction in health risk. The findings emphasize that considering microbial inactivation, caused by storage time and geochemical conditions within ASR storage zones, is critical for recharge water treatment processes.

Suggested Citation

  • Anna Gitter & Kristina D. Mena & John T. Lisle, 2023. "Informing ASR Treatment Practices in a Florida Aquifer through a Human Health Risk Approach," IJERPH, MDPI, vol. 20(19), pages 1-15, September.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:19:p:6833-:d:1247939
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/19/6833/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/19/6833/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ayuso-Gabella, Neus & Page, Declan & Masciopinto, Costantino & Aharoni, Avi & Salgot, Miquel & Wintgens, Thomas, 2011. "Quantifying the effect of Managed Aquifer Recharge on the microbiological human health risks of irrigating crops with recycled water," Agricultural Water Management, Elsevier, vol. 99(1), pages 93-102.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," Economic Information Bulletin 327359, United States Department of Agriculture, Economic Research Service.
    2. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," USDA Miscellaneous 316792, United States Department of Agriculture.
    3. Page, Declan & Vanderzalm, Joanne & Gonzalez, Dennis & Bennett, James & Castellazzi, Pascal, 2023. "Managed aquifer recharge for agriculture in Australia – History, success factors and future implementation," Agricultural Water Management, Elsevier, vol. 285(C).
    4. Hoi‐Fei Mok & Andrew J. Hamilton, 2014. "Exposure Factors for Wastewater‐Irrigated Asian Vegetables and a Probabilistic Rotavirus Disease Burden Model for Their Consumption," Risk Analysis, John Wiley & Sons, vol. 34(4), pages 602-613, April.
    5. S. Fiona Barker, 2014. "Risk of Norovirus Gastroenteritis from Consumption of Vegetables Irrigated with Highly Treated Municipal Wastewater—Evaluation of Methods to Estimate Sewage Quality," Risk Analysis, John Wiley & Sons, vol. 34(5), pages 803-817, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:19:p:6833-:d:1247939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.