IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v99y2011i1p93-102.html
   My bibliography  Save this article

Quantifying the effect of Managed Aquifer Recharge on the microbiological human health risks of irrigating crops with recycled water

Author

Listed:
  • Ayuso-Gabella, Neus
  • Page, Declan
  • Masciopinto, Costantino
  • Aharoni, Avi
  • Salgot, Miquel
  • Wintgens, Thomas

Abstract

Managed Aquifer Recharge (MAR) is increasingly being used for water recycling via aquifers and recovery for irrigation. Quantitative Microbial Risk Assessment (QMRA) was used to assess the human health risks from irrigation using reclaimed water and to evaluate the reduction in risk where MAR is used for irrigation management. Four MAR sites (Shafdan, Israel; Nardò, Italy; Bolivar, Australia; and Sabadell, Spain) that use reclaimed water for crop and/or park irrigation were evaluated, and the risk to human health was quantified in terms of DALYs (Disability Adjusted Life Years). The results indicated that median risks for all scenarios and pathogens evaluated were acceptable (<10−6DALYs) with the exception of risks from accidental aerosol ingestion and bacterial pathogens at the Nardò site. MAR was found to be one of the most important treatment barriers in terms of log10 inactivation credits and hence a useful tool for recycled water irrigation management. The Shafdan site relied almost completely on the MAR treatment to reduce the human health risks from irrigation to acceptable levels. For the Nardò site MAR was also an important barrier, where if MAR had not been used as part of the irrigation system the risk would be unacceptable for protozoa and viruses. The Bolivar and Sabadell sites had much larger and more technologically complex recycled water treatment systems and as such MAR was not a critical barrier in managing human health risks.

Suggested Citation

  • Ayuso-Gabella, Neus & Page, Declan & Masciopinto, Costantino & Aharoni, Avi & Salgot, Miquel & Wintgens, Thomas, 2011. "Quantifying the effect of Managed Aquifer Recharge on the microbiological human health risks of irrigating crops with recycled water," Agricultural Water Management, Elsevier, vol. 99(1), pages 93-102.
  • Handle: RePEc:eee:agiwat:v:99:y:2011:i:1:p:93-102
    DOI: 10.1016/j.agwat.2011.07.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411001715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2011.07.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anna Makri & Reza Modarres & Rebecca Parkin, 2004. "Cryptosporidiosis Susceptibility and Risk: A Case Study," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 209-220, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Fiona Barker, 2014. "Risk of Norovirus Gastroenteritis from Consumption of Vegetables Irrigated with Highly Treated Municipal Wastewater—Evaluation of Methods to Estimate Sewage Quality," Risk Analysis, John Wiley & Sons, vol. 34(5), pages 803-817, May.
    2. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," Economic Information Bulletin 327359, United States Department of Agriculture, Economic Research Service.
    3. Hoi‐Fei Mok & Andrew J. Hamilton, 2014. "Exposure Factors for Wastewater‐Irrigated Asian Vegetables and a Probabilistic Rotavirus Disease Burden Model for Their Consumption," Risk Analysis, John Wiley & Sons, vol. 34(4), pages 602-613, April.
    4. Page, Declan & Vanderzalm, Joanne & Gonzalez, Dennis & Bennett, James & Castellazzi, Pascal, 2023. "Managed aquifer recharge for agriculture in Australia – History, success factors and future implementation," Agricultural Water Management, Elsevier, vol. 285(C).
    5. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," USDA Miscellaneous 316792, United States Department of Agriculture.
    6. Anna Gitter & Kristina D. Mena & John T. Lisle, 2023. "Informing ASR Treatment Practices in a Florida Aquifer through a Human Health Risk Approach," IJERPH, MDPI, vol. 20(19), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:99:y:2011:i:1:p:93-102. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.