IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i5p2949-d763159.html
   My bibliography  Save this article

The Mitigation Effect of Park Landscape on Thermal Environment in Shanghai City Based on Remote Sensing Retrieval Method

Author

Listed:
  • Tian Wang

    (Key Laboratory of Software Technology Research and Application of Changzhou City, Department of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China)

  • Hui Tu

    (Key Laboratory of Software Technology Research and Application of Changzhou City, Department of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China)

  • Bo Min

    (Key Laboratory of Software Technology Research and Application of Changzhou City, Department of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China)

  • Zuzheng Li

    (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

  • Xiaofang Li

    (Key Laboratory of Software Technology Research and Application of Changzhou City, Department of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China)

  • Qingxiang You

    (Key Laboratory of Software Technology Research and Application of Changzhou City, Department of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213032, China)

Abstract

The mitigation effects of park green space on Urban Heat Island (UHI) have been extensively documented. However, the relative effects of the configuration of park components on land surface temperature (LST) inside the park and indicators (i.e., park cooling intensity and distance) surrounding the park is largely unknown. Therefore, the main objective of this study is to explore the quantitative impacts of configuration and morphology features under different urban park scales on the cooling effect. In this study, based on Landsat-8 OLI/TIRS images on 3 August 2015 and 16 August 2020 during summer daytime, the LSTs of Shanghai City were retrieved by atmospheric correction method. Then, the relationships of park landscape features with LSTs in the park and typical indicators representing cooling efficiency of 24 parks on different grades were analyzed. The results showed that the average temperature in urban parks was, respectively, 1.46 °C and 1.66 °C lower than that in the main city of Shanghai in 2015 and 2020, suggesting that urban parks form cold islands in the city. The landscape metrics of park area (PA), park perimeter (PP), green area (GA) and water area (WA), were key characteristics that strong negatively affect the internal park LSTs. However, the park perimeter-to-area ratio (PPAR) had a significant positive power correlation with the park LSTs. Buffer zone analysis showed that LST cools down by about 0.67 °C when the distance from the park increases by 100 m. The Maximum Cooling Distance (MCD) for 2015 and 2020 had a significant correlation with PA, PC, PPAR, GA and WA, and increased sharply within the park area of 20 ha. However, the medium park group had the largest Maximum Cooling Intensity (MCI) in both periods, followed by the small park group. There could be a trade-off relationship between the MCD and MCI in urban parks, which is worth pondering to research. This study could be of great significance for planning and constructing park landscapes, alleviating Urban Heat Island effect and improving urban livability.

Suggested Citation

  • Tian Wang & Hui Tu & Bo Min & Zuzheng Li & Xiaofang Li & Qingxiang You, 2022. "The Mitigation Effect of Park Landscape on Thermal Environment in Shanghai City Based on Remote Sensing Retrieval Method," IJERPH, MDPI, vol. 19(5), pages 1-24, March.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:2949-:d:763159
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/5/2949/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/5/2949/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhijie Wu & Yixin Zhang, 2018. "Spatial Variation of Urban Thermal Environment and Its Relation to Green Space Patterns: Implication to Sustainable Landscape Planning," Sustainability, MDPI, vol. 10(7), pages 1-11, June.
    2. Farshid Aram & Ebrahim Solgi & Ester Higueras García & Amir Mosavi & Annamária R. Várkonyi-Kóczy, 2019. "The Cooling Effect of Large-Scale Urban Parks on Surrounding Area Thermal Comfort," Energies, MDPI, vol. 12(20), pages 1-21, October.
    3. Sun, Ranhao & Chen, Liding, 2017. "Effects of green space dynamics on urban heat islands: Mitigation and diversification," Ecosystem Services, Elsevier, vol. 23(C), pages 38-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ya Hui Teo & Mohamed Akbar Bin Humayun Makani & Weimeng Wang & Linglan Liu & Jun Hong Yap & Kang Hao Cheong, 2022. "Urban Heat Island Mitigation: GIS-Based Analysis for a Tropical City Singapore," IJERPH, MDPI, vol. 19(19), pages 1-23, September.
    2. Maryam Norouzi & Hing-Wah Chau & Elmira Jamei, 2024. "Design and Site-Related Factors Impacting the Cooling Performance of Urban Parks in Different Climate Zones: A Systematic Review," Land, MDPI, vol. 13(12), pages 1-42, December.
    3. Sudeshna Haldar & Priyanka Dey, 2024. "Towards UHI mitigation adopting park cooling effect: Two- decade literature review for a theoretical framework," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(8), pages 1-25, December.
    4. Yan Liu & Zhijie Wang, 2023. "Research Progress and Hotspot Analysis of Urban Heat Island Effects Based on Cite Space Analysis," Land, MDPI, vol. 12(6), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit Kumar & Vivek Agarwal & Lalit Pal & Surendra Kumar Chandniha & Vishal Mishra, 2021. "Effect of Land Surface Temperature on Urban Heat Island in Varanasi City, India," J, MDPI, vol. 4(3), pages 1-10, August.
    2. Berglihn, Elisabeth Cornelia & Gómez-Baggethun, Erik, 2021. "Ecosystem services from urban forests: The case of Oslomarka, Norway," Ecosystem Services, Elsevier, vol. 51(C).
    3. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    4. Tong Zhang & Sophia Shuang Chen & Guangyu Li, 2020. "Exploring the relationships between urban form metrics and the vegetation biomass loss under urban expansion in China," Environment and Planning B, , vol. 47(3), pages 363-380, March.
    5. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Muhammad Sadiq Khan & Sami Ullah & Tao Sun & Arif UR Rehman & Liding Chen, 2020. "Land-Use/Land-Cover Changes and Its Contribution to Urban Heat Island: A Case Study of Islamabad, Pakistan," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    7. Zhijie Wu & Yixin Zhang, 2018. "Spatial Variation of Urban Thermal Environment and Its Relation to Green Space Patterns: Implication to Sustainable Landscape Planning," Sustainability, MDPI, vol. 10(7), pages 1-11, June.
    8. Wojciech Durlak & Margot Dudkiewicz & Małgorzata Milecka, 2022. "A Combined Methods of Senile Trees Inventory in Sustainable Urban Greenery Management on the Example of the City of Sandomierz (Poland)," Land, MDPI, vol. 11(11), pages 1-29, October.
    9. Shanshan Chen & Dagmar Haase & Bing Xue & Thilo Wellmann & Salman Qureshi, 2021. "Integrating Quantity and Quality to Assess Urban Green Space Improvement in the Compact City," Land, MDPI, vol. 10(12), pages 1-14, December.
    10. Yunfang Jiang & Shidan Jiang & Tiemao Shi, 2020. "Comparative Study on the Cooling Effects of Green Space Patterns in Waterfront Build-Up Blocks: An Experience from Shanghai," IJERPH, MDPI, vol. 17(22), pages 1-29, November.
    11. Sadegh Fathi & Hassan Sajadzadeh & Faezeh Mohammadi Sheshkal & Farshid Aram & Gergo Pinter & Imre Felde & Amir Mosavi, 2020. "The Role of Urban Morphology Design on Enhancing Physical Activity and Public Health," IJERPH, MDPI, vol. 17(7), pages 1-29, March.
    12. Han Xiao & Monika Kopecká & Shan Guo & Yanning Guan & Danlu Cai & Chunyan Zhang & Xiaoxin Zhang & Wutao Yao, 2018. "Responses of Urban Land Surface Temperature on Land Cover: A Comparative Study of Vienna and Madrid," Sustainability, MDPI, vol. 10(2), pages 1-19, January.
    13. Xindi Zhang & Yixin Zhang & Jun Zhai & Yongfa Wu & Anyuan Mao, 2021. "Waterscapes for Promoting Mental Health in the General Population," IJERPH, MDPI, vol. 18(22), pages 1-15, November.
    14. Darshana Athukorala & Yuji Murayama, 2020. "Spatial Variation of Land Use/Cover Composition and Impact on Surface Urban Heat Island in a Tropical Sub-Saharan City of Accra, Ghana," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    15. Kaihua Zhang & Guoliang Yun & Peihao Song & Kun Wang & Ang Li & Chenyu Du & Xiaoli Jia & Yuan Feng & Meng Wu & Kexin Qu & Xiaoxue Zhu & Shidong Ge, 2023. "Discover the Desirable Landscape Structure of Urban Parks for Mitigating Urban Heat: A High Spatial Resolution Study Using a Forest City, Luoyang, China as a Lens," IJERPH, MDPI, vol. 20(4), pages 1-26, February.
    16. Hongyu Du & Jinquan Ai & Yongli Cai & Hong Jiang & Pudong Liu, 2019. "Combined Effects of the Surface Urban Heat Island with Landscape Composition and Configuration Based on Remote Sensing: A Case Study of Shanghai, China," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
    17. Yan Liu & Zhijie Wang, 2023. "Research Progress and Hotspot Analysis of Urban Heat Island Effects Based on Cite Space Analysis," Land, MDPI, vol. 12(6), pages 1-19, May.
    18. Yangyang Gong & Zulpiya Mamat & Lei Shi & Fenglin Liu, 2023. "Restorative Effects of Park Visiting on Physiology, Psychology, and Society and the Factors Influencing Park Visiting," Sustainability, MDPI, vol. 15(1), pages 1-19, January.
    19. Federica Banchiero & Ivan Blečić & Valeria Saiu & Giuseppe A. Trunfio, 2020. "Neighbourhood Park Vitality Potential: From Jane Jacobs’s Theory to Evaluation Model," Sustainability, MDPI, vol. 12(15), pages 1-21, July.
    20. Zhijie Wu & Yixin Zhang, 2019. "Water Bodies’ Cooling Effects on Urban Land Daytime Surface Temperature: Ecosystem Service Reducing Heat Island Effect," Sustainability, MDPI, vol. 11(3), pages 1-11, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:2949-:d:763159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.