IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i5p2893-d762241.html
   My bibliography  Save this article

Decoupling between Economic Development and Carbon Emissions and Its Driving Factors: Evidence from China

Author

Listed:
  • Xiaochun Zhao

    (School of Management, Anhui University, Hefei 230601, China)

  • Mei Jiang

    (School of Management, Anhui University, Hefei 230601, China)

  • Wei Zhang

    (School of Public Administration, Sichuan University, Chengdu 610065, China)

Abstract

Analyzing the relationship between economic development and carbon emissions is conducive to better energy saving and emission reduction. This study is based on the panel data of China’s carbon emissions, from 2009 to 2019, and quantitative analysis of the relationship between carbon emissions and economic development through the Tapio decoupling model and the Logarithmic Mean Divisia Index (LMDI) decomposition model. The results show that: First, carbon emission and economic development are increasing year by year, and the development trend of economic growth rate and carbon emission growth rate presents the characteristics of consistency and stage. Second, China’s carbon emissions and economic development are basically in a weak decoupling state, and carbon emissions and economic development are positively correlated. Third, there are significant differences in decoupling indices among the four regions, mainly in that the central region is better than the eastern region, the eastern region is better than the northeast region, the northeast region is better than the western region, and the development of provinces in the region is unbalanced. Fourth, from the perspective of driving factors, the elasticity of population size and economic intensity can restrain the decoupling of carbon emissions, while the elasticity of energy intensity and carbon intensity have a positive effect. Finally, according to the results of empirical analysis, this paper focuses on promoting China’s emission reduction and energy sustainable development from the aspects of developing low-carbon and zero carbon technology, supporting new energy industries and promoting the construction of a carbon emission trading market.

Suggested Citation

  • Xiaochun Zhao & Mei Jiang & Wei Zhang, 2022. "Decoupling between Economic Development and Carbon Emissions and Its Driving Factors: Evidence from China," IJERPH, MDPI, vol. 19(5), pages 1-15, March.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:2893-:d:762241
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/5/2893/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/5/2893/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Bo & Sun, Yefei & Chen, Qingxiang & Wang, Zhaohua, 2018. "Determinants analysis of carbon dioxide emissions in passenger and freight transportation sectors in China," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 127-132.
    2. Chen, Jiandong & Wang, Ping & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2018. "Decomposition and decoupling analysis of CO2 emissions in OECD," Applied Energy, Elsevier, vol. 231(C), pages 937-950.
    3. de Vries, Gaaitzen J. & Ferrarini, Benno, 2017. "What Accounts for the Growth of Carbon Dioxide Emissions in Advanced and Emerging Economies? The Role of Consumption, Technology and Global Supply Chain Participation," Ecological Economics, Elsevier, vol. 132(C), pages 213-223.
    4. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
    5. Du, Limin & Wei, Chu & Cai, Shenghua, 2012. "Economic development and carbon dioxide emissions in China: Provincial panel data analysis," China Economic Review, Elsevier, vol. 23(2), pages 371-384.
    6. Jianghua Liu & Mengxu Li & Yitao Ding, 2021. "Econometric analysis of the impact of the urban population size on carbon dioxide (CO2) emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18186-18203, December.
    7. Pal, Debdatta & Mitra, Subrata Kumar, 2017. "The environmental Kuznets curve for carbon dioxide in India and China: Growth and pollution at crossroad," Journal of Policy Modeling, Elsevier, vol. 39(2), pages 371-385.
    8. Rasli, Amran Md. & Qureshi, Muhammad Imran & Isah-Chikaji, Aliyu & Zaman, Khalid & Ahmad, Mehboob, 2018. "New toxics, race to the bottom and revised environmental Kuznets curve: The case of local and global pollutants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3120-3130.
    9. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    10. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    11. Pan, Xiongfeng & Guo, Shucen & Xu, Haitao & Tian, Mengyuan & Pan, Xianyou & Chu, Junhui, 2022. "China's carbon intensity factor decomposition and carbon emission decoupling analysis," Energy, Elsevier, vol. 239(PC).
    12. Yang, Jun & Hao, Yun & Feng, Chao, 2021. "A race between economic growth and carbon emissions: What play important roles towards global low-carbon development?," Energy Economics, Elsevier, vol. 100(C).
    13. Karmellos, M. & Kosmadakis, V. & Dimas, P. & Tsakanikas, A. & Fylaktos, N. & Taliotis, C. & Zachariadis, T., 2021. "A decomposition and decoupling analysis of carbon dioxide emissions from electricity generation: Evidence from the EU-27 and the UK," Energy, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengcheng Li & Haimeng Liu & Shangkun Yu & Jianshi Wang & Yi Miao & Chengxin Wang, 2022. "Estimating the Decoupling between Net Carbon Emissions and Construction Land and Its Driving Factors: Evidence from Shandong Province, China," IJERPH, MDPI, vol. 19(15), pages 1-26, July.
    2. Jieting Yin & Chaowei Huang, 2022. "Analysis on Influencing Factors Decomposition and Decoupling Effect of Power Carbon Emissions in Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(22), pages 1-26, November.
    3. Hang Hu & Lei Wang & Mingchen Yang, 2024. "Multi-Scale Analysis of Spatial and Temporal Evolution of Carbon Emissions in Yangtze River Economic Belt and Study of Decoupling Effects," Sustainability, MDPI, vol. 16(10), pages 1-21, May.
    4. Zhixiong Wang & Fuhan Li & Zihan Xie & Qingyin Li & Yongli Zhang & Meilin Dai, 2023. "Decoupling CO 2 Emissions from Economic Growth in China’s Cities from 2000 to 2020: A Case Study of the Pearl River Delta Agglomeration," Land, MDPI, vol. 12(9), pages 1-14, September.
    5. Zepan Li & Zhangwei Lu & Lihua Xu & Yijun Shi & Qiwei Ma & Yaqi Wu & Yu Cao & Boyuan Sheng, 2023. "Examining the Decoupling of Economic Growth with Land Expansion and Carbon Emissions in Zhejiang Province, China," Land, MDPI, vol. 12(8), pages 1-21, August.
    6. Hong Xu & Baozhen Liu & Kai Lin & Yunyun Zhang & Bei Liu & Mingjie Xie, 2022. "Towards Carbon Neutrality: Carbon Emission Performance of Science and Technology Finance Policy," IJERPH, MDPI, vol. 19(24), pages 1-22, December.
    7. Yun Chen & Da Wang & Wenxi Zhu & Yunfei Hou & Dingli Liu & Chongsen Ma & Tian Li & Yuan Yuan, 2023. "Effective Conditions for Achieving Carbon Unlocking Targets for Transport Infrastructure Development—Joint Analysis Based on PLS-SEM and NCA," IJERPH, MDPI, vol. 20(2), pages 1-22, January.
    8. Bin Liu & Jiehua Lv, 2024. "Spatiotemporal Evolution and Tapio Decoupling Analysis of Energy-Related Carbon Emissions Using Nighttime Light Data: A Quantitative Case Study at the City Scale in Northeast China," Energies, MDPI, vol. 17(19), pages 1-26, September.
    9. Qifan Guan, 2023. "Decomposing and Decoupling the Energy-Related Carbon Emissions in the Beijing–Tianjin–Hebei Region Using the Extended LMDI and Tapio Index Model," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    10. Pengnan Xiao & Yuan Zhang & Peng Qian & Mengyao Lu & Zupeng Yu & Jie Xu & Chong Zhao & Huilin Qian, 2022. "Spatiotemporal Characteristics, Decoupling Effect and Driving Factors of Carbon Emission from Cultivated Land Utilization in Hubei Province," IJERPH, MDPI, vol. 19(15), pages 1-32, July.
    11. Ke Liu & Mingxue Zhao & Xinyue Xie & Qian Zhou, 2022. "Study on the Decoupling Relationship and Rebound Effect between Economic Growth and Carbon Emissions in Central China," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    12. Rong Fu & Luze Xie & Tao Liu & Juan Huang & Binbin Zheng, 2022. "Chinese Economic Growth Projections Based on Mixed Data of Carbon Emissions under the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(24), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    2. Di Peng & Haibin Liu, 2022. "Measurement and Driving Factors of Carbon Emissions from Coal Consumption in China Based on the Kaya-LMDI Model," Energies, MDPI, vol. 16(1), pages 1-19, December.
    3. Le Hoang Phong, 2019. "Globalization, Financial Development, and Environmental Degradation in the Presence of Environmental Kuznets Curve: Evidence from ASEAN-5 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 40-50.
    4. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    5. Alsedrah, Ibrahim Tawfeeq, 2024. "Fintech and green finance revolutionizing carbon emission reduction through green energy projects in mineral-rich countries," Resources Policy, Elsevier, vol. 94(C).
    6. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    7. Papież, Monika & Śmiech, Sławomir & Frodyma, Katarzyna, 2022. "Does the European Union energy policy support progress in decoupling economic growth from emissions?," Energy Policy, Elsevier, vol. 170(C).
    8. Li, Rongrong & Han, Xinyu & Wang, Qiang, 2023. "Do technical differences lead to a widening gap in China's regional carbon emissions efficiency? Evidence from a combination of LMDI and PDA approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    9. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    10. Wang, Miao & Feng, Chao, 2021. "Towards a decoupling between economic expansion and carbon dioxide emissions in resources sector: A case study of China’s 29 non-ferrous metal industries," Resources Policy, Elsevier, vol. 74(C).
    11. Wang, Juan & Li, Ziming & Wu, Tong & Wu, Siyu & Yin, Tingwei, 2022. "The decoupling analysis of CO2 emissions from power generation in Chinese provincial power sector," Energy, Elsevier, vol. 255(C).
    12. Hao, Yu & Zhang, Tianli & Jing, Leijie & Xiao, Linqi, 2019. "Would the decoupling of electricity occur along with economic growth? Empirical evidence from the panel data analysis for 100 Chinese cities," Energy, Elsevier, vol. 180(C), pages 615-625.
    13. Zbigniew Gołaś, 2023. "Decoupling Analysis of Energy-Related Carbon Dioxide Emissions from Economic Growth in Poland," Energies, MDPI, vol. 16(9), pages 1-27, April.
    14. Shaolong Zeng & Minglin Wang, 2023. "Theoretical and empirical analyses on the factors affecting carbon emissions: case of Zhejiang Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2522-2549, March.
    15. Ozdemir, Ali Can, 2023. "Decomposition and decoupling analysis of carbon dioxide emissions in electricity generation by primary fossil fuels in Turkey," Energy, Elsevier, vol. 273(C).
    16. Chen, Qingjuan & Wang, Qunwei & Zhou, Dequn & Wang, Honggang, 2023. "Drivers and evolution of low-carbon development in China's transportation industry: An integrated analytical approach," Energy, Elsevier, vol. 262(PB).
    17. Cosimo Magazzino & Parisa Pakrooh & Mohammad Zoynul Abedin, 2024. "A decomposition and decoupling analysis for carbon dioxide emissions: evidence from OECD countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 28539-28566, November.
    18. Wang, Zhen & Yan, Haoben & Gao, Xue & Liang, Qiaomei & Mi, Zhifu & Liu, Lancui, 2024. "Have consumption-based CO2 emissions in developed countries peaked?," Energy Policy, Elsevier, vol. 184(C).
    19. Li, Rongrong & Wang, Qiang & Wang, Xuefeng & Zhou, Yulin & Han, Xinyu & Liu, Yi, 2022. "Germany's contribution to global carbon reduction might be underestimated – A new assessment based on scenario analysis with and without trade," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    20. Yan, Zheming & Zou, Baoling & Du, Kerui & Li, Ke, 2020. "Do renewable energy technology innovations promote China's green productivity growth? Fresh evidence from partially linear functional-coefficient models," Energy Economics, Elsevier, vol. 90(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:2893-:d:762241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.