IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i3p1326-d733178.html
   My bibliography  Save this article

How to Improve the Cooperation Mechanism of Emergency Rescue and Optimize the Cooperation Strategy in China: A Tripartite Evolutionary Game Model

Author

Listed:
  • Jida Liu

    (School of Management, Harbin Institute of Technology, Harbin 150001, China)

  • Yuwei Song

    (School of Management, Harbin Institute of Technology, Harbin 150001, China)

  • Shi An

    (School of Management, Harbin Institute of Technology, Harbin 150001, China)

  • Changqi Dong

    (School of Management, Harbin Institute of Technology, Harbin 150001, China)

Abstract

To reveal the interaction and influence mechanism between emergency rescue entities, and to explore and optimize a cooperation mechanism of emergency rescue entities, a tripartite evolutionary game model of emergency rescue cooperation based on government rescue teams, social emergency organizations, and government support institutions was constructed. The stability of each game subject’s strategy choice was explored. Simulation analysis was applied to investigate the influence mechanism of key parameters on the evolution of the game subject’s strategy combination. The research results show that government rescue teams, social emergency organizations, and government support institutions have consistent political demands and rescue targets in emergency rescue cooperation. The game subjects are driving forces for each other to choose positive strategies. The game evolution process of the emergency cooperation model shows a “mobilization-coordination” feature. At the same time, the emergency capital stock formed based on trust relationships, information matching, and institutional norms between game subjects can promote the evolution of the game system toward (1,1,1). In addition, for government organizations with limited emergency resources, the average allocation of emergency resources is not the optimal solution for emergency rescue efficiency. However, it is easier to achieve the overall target of emergency rescue cooperation by investing limited emergency resources in key variables that match the on-site situation. On this basis, combined with the practice of emergency rescues in emergencies, countermeasures and solutions are proposed to optimize the mechanism and improve the efficiency of emergency rescue cooperation.

Suggested Citation

  • Jida Liu & Yuwei Song & Shi An & Changqi Dong, 2022. "How to Improve the Cooperation Mechanism of Emergency Rescue and Optimize the Cooperation Strategy in China: A Tripartite Evolutionary Game Model," IJERPH, MDPI, vol. 19(3), pages 1-27, January.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:3:p:1326-:d:733178
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/3/1326/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/3/1326/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jida Liu & Yanan Guo & Shi An & Chenxi Lian, 2021. "A Study on the Mechanism and Strategy of Cross-Regional Emergency Cooperation for Natural Disasters in China—Based on the Perspective of Evolutionary Game Theory," IJERPH, MDPI, vol. 18(21), pages 1-29, November.
    2. Yingxin Chen & Jing Zhang & Zhaoguo Wang & Pandu R. Tadikamalla, 2020. "Research on the Construction of a Natural Hazard Emergency Relief Alliance Based on the Public Participation Degree," Sustainability, MDPI, vol. 12(7), pages 1-17, March.
    3. Wei Wang & Li Huang & Xuedong Liang, 2018. "On the Simulation-Based Reliability of Complex Emergency Logistics Networks in Post-Accident Rescues," IJERPH, MDPI, vol. 15(1), pages 1-10, January.
    4. Wex, Felix & Schryen, Guido & Feuerriegel, Stefan & Neumann, Dirk, 2014. "Emergency response in natural disaster management: Allocation and scheduling of rescue units," European Journal of Operational Research, Elsevier, vol. 235(3), pages 697-708.
    5. Yi Lu & Jiuping Xu, 2014. "The progress of emergency response and rescue in China: a comparative analysis of Wenchuan and Lushan earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 421-444, November.
    6. Dian Sun & Lupeng Zhang & Zifeng Su, 2020. "Evacuate or Stay? A Typhoon Evacuation Decision Model in China Based on the Evolutionary Game Theory in Complex Networks," IJERPH, MDPI, vol. 17(3), pages 1-17, January.
    7. Aparna Kumari & Tim G. Frazier, 2021. "Evaluating social capital in emergency and disaster management and hazards plans," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 949-973, October.
    8. Ming Zhao & Qiuwen Chen, 2015. "Risk-based optimization of emergency rescue facilities locations for large-scale environmental accidents to improve urban public safety," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 163-189, January.
    9. Yingxin Chen & Jing Zhang & Pandu R. Tadikamalla & Lei Zhou, 2019. "The Mechanism of Social Organization Participation in Natural Hazards Emergency Relief: A Case Study Based on the Social Network Analysis," IJERPH, MDPI, vol. 16(21), pages 1-20, October.
    10. Ruguo Fan & Yibo Wang & Jinchai Lin, 2021. "Study on Multi-Agent Evolutionary Game of Emergency Management of Public Health Emergencies Based on Dynamic Rewards and Punishments," IJERPH, MDPI, vol. 18(16), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiguang Wang & Yushang Hu & Weihua Qu & Liuxin Ma, 2022. "Research on Emergency Supply Chain Collaboration Based on Tripartite Evolutionary Game," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    2. Shizhen Bai & Wenzhen Yu & Man Jiang, 2022. "Promoting the Tripartite Cooperative Mechanism of E-Commerce Poverty Alleviation: Based on the Evolutionary Game Method," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    3. Yanmin Ouyang & Haoran Zhao, 2022. "Evolutionary Game Analysis of Collaborative Prevention and Control for Public Health Emergencies," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    4. Feiyue Wang & Ziling Xie & Hui Liu & Zhongwei Pei & Dingli Liu, 2022. "Multiobjective Emergency Resource Allocation under the Natural Disaster Chain with Path Planning," IJERPH, MDPI, vol. 19(13), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jida Liu & Changqi Dong & Shi An & Yanan Guo, 2021. "Research on the Natural Hazard Emergency Cooperation Behavior between Governments and Social Organizations Based on the Hybrid Mechanism of Incentive and Linkage in China," IJERPH, MDPI, vol. 18(24), pages 1-27, December.
    2. Jida Liu & Yanan Guo & Shi An & Chenxi Lian, 2021. "A Study on the Mechanism and Strategy of Cross-Regional Emergency Cooperation for Natural Disasters in China—Based on the Perspective of Evolutionary Game Theory," IJERPH, MDPI, vol. 18(21), pages 1-29, November.
    3. Fattahi, Mohammad & Keyvanshokooh, Esmaeil & Kannan, Devika & Govindan, Kannan, 2023. "Resource planning strategies for healthcare systems during a pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 192-206.
    4. Jingyi Xue, 2018. "Fair division with uncertain needs," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(1), pages 105-136, June.
    5. Araya-Córdova, P.J. & Vásquez, Óscar C., 2018. "The disaster emergency unit scheduling problem to control wildfires," International Journal of Production Economics, Elsevier, vol. 200(C), pages 311-317.
    6. Sperling, Martina & Schryen, Guido, 2022. "Decision support for disaster relief: Coordinating spontaneous volunteers," European Journal of Operational Research, Elsevier, vol. 299(2), pages 690-705.
    7. Wei Wang & Li Huang & Zhaoxia Guo, 2017. "Optimization of Emergency Material Dispatch from Multiple Depot Locations to Multiple Disaster Sites," Sustainability, MDPI, vol. 9(11), pages 1-8, October.
    8. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02879681, HAL.
    9. Thomas J. Huggins & Lili Yang & Didier Sornette, 2021. "Introduction to the Special Issue on Cascading Disaster Modelling and Prevention," IJERPH, MDPI, vol. 18(9), pages 1-4, April.
    10. Rauchecker, Gerhard & Schryen, Guido, 2019. "An exact branch-and-price algorithm for scheduling rescue units during disaster response," European Journal of Operational Research, Elsevier, vol. 272(1), pages 352-363.
    11. Deolfa Josè Moisès & Nnenesi Kgabi & Olivia Kunguma, 2023. "Integrating “Top-Down” and “Community-Centric” Approaches for Community-Based Flood Early Warning Systems in Namibia," Challenges, MDPI, vol. 14(4), pages 1-17, October.
    12. Feiyue Wang & Ziling Xie & Hui Liu & Zhongwei Pei & Dingli Liu, 2022. "Multiobjective Emergency Resource Allocation under the Natural Disaster Chain with Path Planning," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    13. Hariklia D. Skilodimou & George D. Bathrellos, 2021. "Natural and Technological Hazards in Urban Areas: Assessment, Planning and Solutions," Sustainability, MDPI, vol. 13(15), pages 1-5, July.
    14. Pingping Cao & Jin Zheng & Mingyang Li & Yu Fu, 2023. "A Model for the Assignment of Emergency Rescuers Considering Collaborative Information," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
    15. Bowen Guo & Wei Zhan, 2023. "Research on Integrated Scheduling of Multi-Mode Emergency Rescue for Flooding in Chemical Parks," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    16. Sina Nayeri & Zeinab Sazvar & Jafar Heydari, 2022. "A fuzzy robust planning model in the disaster management response phase under precedence constraints," Operational Research, Springer, vol. 22(4), pages 3571-3605, September.
    17. Ruguo Fan & Rongkai Chen, 2022. "Promotion Policies for Electric Vehicle Diffusion in China Considering Dynamic Consumer Preferences: A Network-Based Evolutionary Analysis," IJERPH, MDPI, vol. 19(9), pages 1-21, April.
    18. Ling Tan & Ji Guo & Selvarajah Mohanarajah & Kun Zhou, 2021. "Can we detect trends in natural disaster management with artificial intelligence? A review of modeling practices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2389-2417, July.
    19. Dedi Iskandar Inan & Ghassan Beydoun & Simon Opper, 2018. "Agent-Based Knowledge Analysis Framework in Disaster Management," Information Systems Frontiers, Springer, vol. 20(4), pages 783-802, August.
    20. Doan, Xuan Vinh & Shaw, Duncan, 2019. "Resource allocation when planning for simultaneous disasters," European Journal of Operational Research, Elsevier, vol. 274(2), pages 687-709.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:3:p:1326-:d:733178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.