IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i5p2009-d1600342.html
   My bibliography  Save this article

Research on Emergency Rescue Scheme Based on Multi-Objective Material Dispatching of Heavy-Haul Railway

Author

Listed:
  • Xiaolei Zhang

    (China Academy of Safety Science and Technology, Beijing 100012, China
    School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Kaigong Zhao

    (School of Civil and Resource Engineering, Beijing University of Science and Technology, Beijing 100083, China)

  • Xingkai Zhang

    (School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Shang Gao

    (China Academy of Safety Science and Technology, Beijing 100012, China
    School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Ting Meng

    (School of Civil and Resource Engineering, Beijing University of Science and Technology, Beijing 100083, China)

Abstract

It is particularly important to improve the emergency rescue response ability of heavy-haul railways to ensure the safety of personnel and the efficiency of material transportation. The current research has achieved some results for multi-objective material dispatching, but it does not consider the impact of accident response level and material type on material dispatching scheme. In this study, a heavy-haul railway in China was selected as the research object. By designing a dual-objective material scheduling model, an optimal material scheduling scheme was obtained, and the optimal solution was solved by a non-dominated sorting genetic algorithm (NSGA-II). Under the condition of keeping the station unchanged and ensuring that the total amount of materials remained unchanged, an optimization scheme of relief material reserves that match the risk characteristics of the line is proposed. The results show that, based on the utility theory, the minimum distance of the improved dual-objective material dispatching is reduced by 34.8% (single accident point) and 62.99% (multiple accident points), and the total distance of material dispatching is reduced by 37.92% and 70.57%, respectively, indicating that the optimized reserve scheme can effectively shorten the response time and improve the rescue efficiency. The material reserve optimization scheme for emergency rescue stations proposed in this study has important reference value for improving the emergency rescue efficiency of heavy-haul railways.

Suggested Citation

  • Xiaolei Zhang & Kaigong Zhao & Xingkai Zhang & Shang Gao & Ting Meng, 2025. "Research on Emergency Rescue Scheme Based on Multi-Objective Material Dispatching of Heavy-Haul Railway," Sustainability, MDPI, vol. 17(5), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2009-:d:1600342
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/5/2009/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/5/2009/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheu, Jiuh-Biing, 2007. "An emergency logistics distribution approach for quick response to urgent relief demand in disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 687-709, November.
    2. Wex, Felix & Schryen, Guido & Feuerriegel, Stefan & Neumann, Dirk, 2014. "Emergency response in natural disaster management: Allocation and scheduling of rescue units," European Journal of Operational Research, Elsevier, vol. 235(3), pages 697-708.
    3. Ben-Tal, Aharon & Chung, Byung Do & Mandala, Supreet Reddy & Yao, Tao, 2011. "Robust optimization for emergency logistics planning: Risk mitigation in humanitarian relief supply chains," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1177-1189, September.
    4. Yiming Cao & Hengxing Lan & Langping Li, 2023. "Disaster Risk Assessment for Railways: Challenges and a Sustainable Promising Solution Based on BIM+GIS," Sustainability, MDPI, vol. 15(24), pages 1-27, December.
    5. Nadizadeh, Ali & Hosseini Nasab, Hasan, 2014. "Solving the dynamic capacitated location-routing problem with fuzzy demands by hybrid heuristic algorithm," European Journal of Operational Research, Elsevier, vol. 238(2), pages 458-470.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Wang & Li Huang & Zhaoxia Guo, 2017. "Optimization of Emergency Material Dispatch from Multiple Depot Locations to Multiple Disaster Sites," Sustainability, MDPI, vol. 9(11), pages 1-8, October.
    2. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    3. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02879681, HAL.
    4. Afshin Kamyabniya & M. M. Lotfi & Mohsen Naderpour & Yuehwern Yih, 2018. "Robust Platelet Logistics Planning in Disaster Relief Operations Under Uncertainty: a Coordinated Approach," Information Systems Frontiers, Springer, vol. 20(4), pages 759-782, August.
    5. Sheu, Jiuh-Biing, 2014. "Post-disaster relief–service centralized logistics distribution with survivor resilience maximization," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 288-314.
    6. Doan, Xuan Vinh & Shaw, Duncan, 2019. "Resource allocation when planning for simultaneous disasters," European Journal of Operational Research, Elsevier, vol. 274(2), pages 687-709.
    7. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    8. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency relief routing models for injured victims considering equity and priority," Annals of Operations Research, Springer, vol. 283(1), pages 1573-1606, December.
    9. He, Yuxuan & Liu, Nan, 2015. "Methodology of emergency medical logistics for public health emergencies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 178-200.
    10. Chowdhury, Sudipta & Emelogu, Adindu & Marufuzzaman, Mohammad & Nurre, Sarah G. & Bian, Linkan, 2017. "Drones for disaster response and relief operations: A continuous approximation model," International Journal of Production Economics, Elsevier, vol. 188(C), pages 167-184.
    11. Cejun Cao & Congdong Li & Qin Yang & Fanshun Zhang, 2017. "Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain," Sustainability, MDPI, vol. 9(11), pages 1-22, November.
    12. Julián Alberto Espejo-Díaz & William J. Guerrero, 2021. "A multiagent approach to solving the dynamic postdisaster relief distribution problem," Operations Management Research, Springer, vol. 14(1), pages 177-193, June.
    13. Cao, Cejun & Liu, Yang & Tang, Ou & Gao, Xuehong, 2021. "A fuzzy bi-level optimization model for multi-period post-disaster relief distribution in sustainable humanitarian supply chains," International Journal of Production Economics, Elsevier, vol. 235(C).
    14. Jiajian Huang & Longfei Li & Peng Jiang & Siqi Zhang, 2024. "DEMATEL-Based ANP Model for Identifying Critical Indicators in Sustainable Emergency Material Reserve Systems," Sustainability, MDPI, vol. 16(12), pages 1-25, June.
    15. Shuanglin Li & Kok Lay Teo, 2019. "Post-disaster multi-period road network repair: work scheduling and relief logistics optimization," Annals of Operations Research, Springer, vol. 283(1), pages 1345-1385, December.
    16. Anchal Patil & Jitender Madaan, 2024. "A Study on the Research Clusters in the Humanitarian Supply Chain Literature: A Systematic Review," Logistics, MDPI, vol. 8(4), pages 1-22, December.
    17. Fuyu Wang & Xuefei Ge & Yan Li & Jingjing Zheng & Weichen Zheng, 2023. "Optimising the Distribution of Multi-Cycle Emergency Supplies after a Disaster," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
    18. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    19. Wang, Haijun & Du, Lijing & Ma, Shihua, 2014. "Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 160-179.
    20. Souza, Juliano Silva & Lim-Apo, Flávio Araújo & Varella, Leonardo & Coelho, Antônio Sérgio & Souza, João Carlos, 2022. "Multi-period optimization model for planning people allocation in shelters and distributing aid with special constraints," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2009-:d:1600342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.