IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i3p682-d311477.html
   My bibliography  Save this article

Evacuate or Stay? A Typhoon Evacuation Decision Model in China Based on the Evolutionary Game Theory in Complex Networks

Author

Listed:
  • Dian Sun

    (School of Public Policy & Management, Tsinghua University, Beijing 100084, China
    Center for Crisis Management Research (Sponsored by Beijing Planning Office of Philosophy & Social Science), Tsinghua University, Beijing 100084, China)

  • Lupeng Zhang

    (School of Public Administration, Beijing University of Aeronautics and Astronautics, Beijing 100191, China)

  • Zifeng Su

    (School of Economics, Peking University, Beijing 100871, China
    Finance Research and Development Center, China Development Bank, Beijing 100032, China)

Abstract

The Chinese Government has played an important role in organizing the evacuation of typhoon disasters, and in-depth analysis of individual behavioral decisions is a prerequisite for adopting an effective emergency organization plan. Existing evacuation plans only consider how the Government issues the early warning and organizes the mandatory evacuation, but does not formulate effective policies to improve the efficiency of self-evacuation of evacuees and lacks the understanding of individual evacuation decision-making. Using game-based theory in a small-world network context, we build an evolutionary game model of evacuation decision diffusion between evacuees in the context of a complex network. The model simulates the effects of guaranteeing the evacuation order and providing material supplies on the evacuation decision diffusion in a small-world network in China. The results showed that various levels of policy-implementation led to different rates of evacuation. As the cost-reduction of the evacuation process increased, the evacuation response rate in the social system increased. In contrast, as the rate of reducing the non-evacuation cost decreased or the cost-reduction rate of non-evacuation increased, the evacuation response rate in the social system decreased. The study findings provided insights on emergency planning and the effectiveness of their implementation in social networks, which can be used to improve evacuation policy.

Suggested Citation

  • Dian Sun & Lupeng Zhang & Zifeng Su, 2020. "Evacuate or Stay? A Typhoon Evacuation Decision Model in China Based on the Evolutionary Game Theory in Complex Networks," IJERPH, MDPI, vol. 17(3), pages 1-17, January.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:682-:d:311477
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/3/682/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/3/682/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xie, Chi & Lin, Dung-Ying & Travis Waller, S., 2010. "A dynamic evacuation network optimization problem with lane reversal and crossing elimination strategies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 295-316, May.
    2. Yi, Wenqi & Nozick, Linda & Davidson, Rachel & Blanton, Brian & Colle, Brian, 2017. "Optimization of the issuance of evacuation orders under evolving hurricane conditions," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 285-304.
    3. Swamy, Rahul & Kang, Jee Eun & Batta, Rajan & Chung, Younshik, 2017. "Hurricane evacuation planning using public transportation," Socio-Economic Planning Sciences, Elsevier, vol. 59(C), pages 43-55.
    4. Zongjie Pi & Xin Gao & Linyan Chen & Jinghua Liu, 2019. "The New Path to Improve Construction Safety Performance in China: An Evolutionary Game Theoretic Approach," IJERPH, MDPI, vol. 16(13), pages 1-24, July.
    5. Dian Sun & Jee Eun Kang & Rajan Batta & Yan Song, 2017. "Optimization of Evacuation Warnings Prior to a Hurricane Disaster," Sustainability, MDPI, vol. 9(11), pages 1-29, November.
    6. Venu Kandiah & Andrew R. Binder & Emily Z. Berglund, 2017. "An Empirical Agent‐Based Model to Simulate the Adoption of Water Reuse Using the Social Amplification of Risk Framework," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 2005-2022, October.
    7. Yingxin Chen & Jing Zhang & Pandu R. Tadikamalla & Xutong Gao, 2019. "The Relationship among Government, Enterprise, and Public in Environmental Governance from the Perspective of Multi-Player Evolutionary Game," IJERPH, MDPI, vol. 16(18), pages 1-17, September.
    8. Song, Xiao & Ma, Liang & Ma, Yaofei & Yang, Chen & Ji, Hang, 2016. "Selfishness- and Selflessness-based models of pedestrian room evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 455-466.
    9. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    10. Zheng, Xiaoping & Cheng, Yuan, 2011. "Conflict game in evacuation process: A study combining Cellular Automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1042-1050.
    11. Samanthi Durage & S. Wirasinghe & Janaka Ruwanpura, 2013. "Comparison of the Canadian and US tornado detection and warning systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(1), pages 117-137, March.
    12. Adam Pel & Michiel Bliemer & Serge Hoogendoorn, 2012. "A review on travel behaviour modelling in dynamic traffic simulation models for evacuations," Transportation, Springer, vol. 39(1), pages 97-123, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jida Liu & Changqi Dong & Shi An & Yanan Guo, 2021. "Research on the Natural Hazard Emergency Cooperation Behavior between Governments and Social Organizations Based on the Hybrid Mechanism of Incentive and Linkage in China," IJERPH, MDPI, vol. 18(24), pages 1-27, December.
    2. Jida Liu & Yanan Guo & Shi An & Chenxi Lian, 2021. "A Study on the Mechanism and Strategy of Cross-Regional Emergency Cooperation for Natural Disasters in China—Based on the Perspective of Evolutionary Game Theory," IJERPH, MDPI, vol. 18(21), pages 1-29, November.
    3. Jida Liu & Yuwei Song & Shi An & Changqi Dong, 2022. "How to Improve the Cooperation Mechanism of Emergency Rescue and Optimize the Cooperation Strategy in China: A Tripartite Evolutionary Game Model," IJERPH, MDPI, vol. 19(3), pages 1-27, January.
    4. Jingyuan Li & Weile Liu & Fangwei Zhang & Taiyang Li & Rui Wang, 2022. "A Ship Fire Escape Speed Correction Method Considering the Influence of Crowd Interaction," Mathematics, MDPI, vol. 10(15), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rambha, Tarun & Nozick, Linda K. & Davidson, Rachel, 2021. "Modeling hurricane evacuation behavior using a dynamic discrete choice framework," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 75-100.
    2. Xuedong Yan & Xiaobing Liu & Yulei Song, 2018. "Optimizing evacuation efficiency under emergency with consideration of social fairness based on a cell transmission model," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-21, November.
    3. Urena Serulle, Nayel & Cirillo, Cinzia, 2017. "The optimal time to evacuate: A behavioral dynamic model on Louisiana resident data," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 447-463.
    4. Junji Urata & Adam J. Pel, 2018. "People's Risk Recognition Preceding Evacuation and Its Role in Demand Modeling and Planning," Risk Analysis, John Wiley & Sons, vol. 38(5), pages 889-905, May.
    5. Karabuk, Suleyman & Manzour, Hasan, 2019. "A multi-stage stochastic program for evacuation management under tornado track uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 128-151.
    6. Zou, Baobao & Lu, Chunxia & Mao, Shirong & Li, Yi, 2020. "Effect of pedestrian judgement on evacuation efficiency considering hesitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    7. Dian Sun & Jee Eun Kang & Rajan Batta & Yan Song, 2017. "Optimization of Evacuation Warnings Prior to a Hurricane Disaster," Sustainability, MDPI, vol. 9(11), pages 1-29, November.
    8. Vedat Bayram & Hande Yaman, 2018. "Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach," Transportation Science, INFORMS, vol. 52(2), pages 416-436, March.
    9. Tian, Huan-huan & Wei, Yan-fang & Dong, Li-yun & Xue, Yu & Zheng, Rong-sen, 2018. "Resolution of conflicts in cellular automaton evacuation model with the game-theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 991-1006.
    10. Wu, Lingxiao & Yang, Dong & Wang, Shuaian & Yuan, Yun, 2020. "Evacuating offshore working barges from a land reclamation site in storm emergencies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    11. Rambha, Tarun & Nozick, Linda K. & Davidson, Rachel & Yi, Wenqi & Yang, Kun, 2021. "A stochastic optimization model for staged hospital evacuation during hurricanes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    12. Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    13. Emerson, Isaac Arnold & Amala, Arumugam, 2017. "Protein contact maps: A binary depiction of protein 3D structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 782-791.
    14. Faedo, Nicolás & García-Violini, Demián & Ringwood, John V., 2021. "Controlling synchronization in a complex network of nonlinear oscillators via feedback linearisation and H∞-control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    15. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    16. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    17. Igor Belykh & Mateusz Bocian & Alan R. Champneys & Kevin Daley & Russell Jeter & John H. G. Macdonald & Allan McRobie, 2021. "Emergence of the London Millennium Bridge instability without synchronisation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    18. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    19. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    20. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:682-:d:311477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.