IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i1p79-d125698.html
   My bibliography  Save this article

On the Simulation-Based Reliability of Complex Emergency Logistics Networks in Post-Accident Rescues

Author

Listed:
  • Wei Wang

    (College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China)

  • Li Huang

    (School of Public Administration, Hohai University, Nanjing 210098, China)

  • Xuedong Liang

    (Business School, Sichuan University, Chengdu 610065, China)

Abstract

This paper investigates the reliability of complex emergency logistics networks, as reliability is crucial to reducing environmental and public health losses in post-accident emergency rescues. Such networks’ statistical characteristics are analyzed first. After the connected reliability and evaluation indices for complex emergency logistics networks are effectively defined, simulation analyses of network reliability are conducted under two different attack modes using a particular emergency logistics network as an example. The simulation analyses obtain the varying trends in emergency supply times and the ratio of effective nodes and validates the effects of network characteristics and different types of attacks on network reliability. The results demonstrate that this emergency logistics network is both a small-world and a scale-free network. When facing random attacks, the emergency logistics network steadily changes, whereas it is very fragile when facing selective attacks. Therefore, special attention should be paid to the protection of supply nodes and nodes with high connectivity. The simulation method provides a new tool for studying emergency logistics networks and a reference for similar studies.

Suggested Citation

  • Wei Wang & Li Huang & Xuedong Liang, 2018. "On the Simulation-Based Reliability of Complex Emergency Logistics Networks in Post-Accident Rescues," IJERPH, MDPI, vol. 15(1), pages 1-10, January.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:1:p:79-:d:125698
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/1/79/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/1/79/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    2. Afshar, Abbas & Haghani, Ali, 2012. "Modeling integrated supply chain logistics in real-time large-scale disaster relief operations," Socio-Economic Planning Sciences, Elsevier, vol. 46(4), pages 327-338.
    3. César Ducruet & Theo Notteboom, 2012. "The worldwide maritime network of container shipping : Spatial structure and regional dynamics," Post-Print hal-03246962, HAL.
    4. Ben-Tal, Aharon & Chung, Byung Do & Mandala, Supreet Reddy & Yao, Tao, 2011. "Robust optimization for emergency logistics planning: Risk mitigation in humanitarian relief supply chains," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1177-1189, September.
    5. Pais Montes, Carlos & Freire Seoane, Maria Jesus & González Laxe, Fernando, 2012. "General cargo and containership emergent routes: A complex networks description," Transport Policy, Elsevier, vol. 24(C), pages 126-140.
    6. Edrissi, Ali & Nourinejad, Mehdi & Roorda, Matthew J., 2015. "Transportation network reliability in emergency response," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 56-73.
    7. Wei Wang & Li Huang & Zhaoxia Guo, 2017. "Optimization of Emergency Material Dispatch from Multiple Depot Locations to Multiple Disaster Sites," Sustainability, MDPI, vol. 9(11), pages 1-8, October.
    8. Erhan Erkut & Vedat Verter, 1998. "Modeling of Transport Risk for Hazardous Materials," Operations Research, INFORMS, vol. 46(5), pages 625-642, October.
    9. Razi, Nasuh & Karatas, Mumtaz, 2016. "A multi-objective model for locating search and rescue boats," European Journal of Operational Research, Elsevier, vol. 254(1), pages 279-293.
    10. Lu, Chung-Cheng, 2013. "Robust weighted vertex p-center model considering uncertain data: An application to emergency management," European Journal of Operational Research, Elsevier, vol. 230(1), pages 113-121.
    11. Najafi, Mehdi & Eshghi, Kourosh & Dullaert, Wout, 2013. "A multi-objective robust optimization model for logistics planning in the earthquake response phase," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 217-249.
    12. An, Yu & Zeng, Bo & Zhang, Yu & Zhao, Long, 2014. "Reliable p-median facility location problem: two-stage robust models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 54-72.
    13. Michael R. Wagner & Zinovy Radovilsky, 2012. "Optimizing Boat Resources at the U.S. Coast Guard: Deterministic and Stochastic Models," Operations Research, INFORMS, vol. 60(5), pages 1035-1049, October.
    14. César Ducruet & Theo E. Notteboom, 2012. "The worldwide maritime network of container shipping: Spatial structure and regional dynamics," Post-Print halshs-00538051, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ning Zhang & Zaiwu Gong & Kedong Yin & Yuhong Wang, 2018. "Special Issue “Decision Models in Green Growth and Sustainable Development”," IJERPH, MDPI, vol. 15(6), pages 1-8, May.
    2. Tinggui Chen & Shiwen Wu & Jianjun Yang & Guodong Cong, 2019. "Risk Propagation Model and Its Simulation of Emergency Logistics Network Based on Material Reliability," IJERPH, MDPI, vol. 16(23), pages 1-18, November.
    3. Ling Shen & Fengming Tao & Yuhe Shi & Ruiru Qin, 2019. "Optimization of Location-Routing Problem in Emergency Logistics Considering Carbon Emissions," IJERPH, MDPI, vol. 16(16), pages 1-18, August.
    4. Li, Junjun & Yu, Anqi & Xu, Bowei, 2022. "Risk propagation and evolution analysis of multi-level handlings at automated terminals based on double-layer dynamic network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    5. Jida Liu & Yuwei Song & Shi An & Changqi Dong, 2022. "How to Improve the Cooperation Mechanism of Emergency Rescue and Optimize the Cooperation Strategy in China: A Tripartite Evolutionary Game Model," IJERPH, MDPI, vol. 19(3), pages 1-27, January.
    6. Feiyue Wang & Ziling Xie & Hui Liu & Zhongwei Pei & Dingli Liu, 2022. "Multiobjective Emergency Resource Allocation under the Natural Disaster Chain with Path Planning," IJERPH, MDPI, vol. 19(13), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    2. Marc-Antoine Faure & Bárbara Polo Martin & Fabio Cremaschini & César Ducruet, 2024. "Shipping Trade and Geopolitical Turmoils: The Case of the Ukrainian Maritime Network," EconomiX Working Papers 2024-24, University of Paris Nanterre, EconomiX.
    3. Viljoen, Nadia M. & Joubert, Johan W., 2016. "The vulnerability of the global container shipping network to targeted link disruption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 396-409.
    4. Nguyen Tran & Hans-Dietrich Haasis, 2014. "Empirical analysis of the container liner shipping network on the East-West corridor (1995–2011)," Netnomics, Springer, vol. 15(3), pages 121-153, November.
    5. Sheu, Jiuh-Biing, 2014. "Post-disaster relief–service centralized logistics distribution with survivor resilience maximization," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 288-314.
    6. Ducruet, César & Itoh, Hidekazu, 2022. "The spatial determinants of innovation diffusion: Evidence from global shipping networks," Journal of Transport Geography, Elsevier, vol. 101(C).
    7. Jin, Lianjie & Chen, Jing & Chen, Zilin & Sun, Xiangjun & Yu, Bin, 2022. "Impact of COVID-19 on China's international liner shipping network based on AIS data," Transport Policy, Elsevier, vol. 121(C), pages 90-99.
    8. Bingxue Qian & Ning Zhang, 2022. "Topology and Robustness of Weighted Air Transport Networks in Multi-Airport Region," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    9. Zuzanna Kosowska-Stamirowska & César Ducruet & Nishant Rai, 2016. "Evolving structure of the maritime trade network: evidence from the Lloyd’s Shipping Index (1890–2000)," Journal of Shipping and Trade, Springer, vol. 1(1), pages 1-17, December.
    10. Paul, Jomon A. & Wang, Xinfang (Jocelyn), 2019. "Robust location-allocation network design for earthquake preparedness," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 139-155.
    11. Tocchi, Daniela & Sys, Christa & Papola, Andrea & Tinessa, Fiore & Simonelli, Fulvio & Marzano, Vittorio, 2022. "Hypergraph-based centrality metrics for maritime container service networks: A worldwide application," Journal of Transport Geography, Elsevier, vol. 98(C).
    12. César Ducruet & Hidekazu Itoh, 2022. "The spatial determinants of innovation diffusion: evidence from global shipping networks," EconomiX Working Papers 2022-27, University of Paris Nanterre, EconomiX.
    13. Carlos Pais-Montes & Jean-Claude Thill & David Guerrero, 2024. "Identification of shipping schedule cancellations with AIS data: an application to the Europe-Far East route before and during the COVID-19 pandemic," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(3), pages 490-508, September.
    14. Cao, Wanpeng & Du, Debin & Xia, Qifan, 2023. "Unbalanced global vaccine product trade pattern: A network perspective," Social Science & Medicine, Elsevier, vol. 325(C).
    15. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    16. Sugimura, Yoshihisa & Akakura, Yasuhiro & Yotsushima, Tatsuki & Kawasaki, Tomoya, 2023. "Evaluation of Japanese port policies through network analysis," Transport Policy, Elsevier, vol. 135(C), pages 59-70.
    17. Wang, Weiqiao & Yang, Kai & Yang, Lixing & Gao, Ziyou, 2023. "Distributionally robust chance-constrained programming for multi-period emergency resource allocation and vehicle routing in disaster response operations," Omega, Elsevier, vol. 120(C).
    18. Nadia M. Viljoen & Johan W. Joubert, 2018. "The Road most Travelled: The Impact of Urban Road Infrastructure on Supply Chain Network Vulnerability," Networks and Spatial Economics, Springer, vol. 18(1), pages 85-113, March.
    19. César Ducruet, 2020. "The geography of maritime networks: A critical review," Post-Print halshs-02922543, HAL.
    20. César Ducruet & Hidekazu Itoh, 2022. "The spatial determinants of innovation diffusion: Evidence from global shipping networks," Post-Print halshs-03719062, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:1:p:79-:d:125698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.