IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i24p16644-d1000175.html
   My bibliography  Save this article

Progress of Research on Urban Growth Boundary and Its Implications in Chinese Studies Based on Bibliometric Analysis

Author

Listed:
  • Xiaoyang Liu

    (School of Urban Design, Wuhan University, Wuhan 430072, China
    Research Center for Hubei Habitat Environmental Engineering & Technology, Wuhan 430072, China
    Shenzhen Research Institute, Wuhan University, Shenzhen 518057, China)

  • Weihao Shi

    (School of Architecture, Tianjin University, Tianjin 300072, China)

  • Sen Zhang

    (School of Architecture, Tianjin University, Tianjin 300072, China)

Abstract

Urban sprawl is a development theme of cities all over the world, especially in developing countries with rapid urbanization, and the long-established rough and outward urban growth pattern has brought about a series of social and ecological problems. As an important tool in controlling urban sprawl in western countries, the urban growth boundary (UGB) has become one of the three major policy tools in the national spatial planning system since it was introduced into China. Combined with a bibliometric analysis, this literature review summarizes UGB studies on development and evolution, delimitation means, and implementation management and provides references for studying UGB adaptability in China. The results show that: (1) Originating from Howard’s garden city concept, UGB studies have formed a relatively complete system of “theoretical basis, technical methods, supporting policies, and implementation management” through long-term empirical research in foreign countries. With a relatively late start in China, UGB research currently focuses on different situations between China and abroad and the adaptation of China’s localization. (2) UGB delimitation mainly includes two aspects: forward expansion, which, from the urban development perspective, is mainly supported by cellular automata (CA) urban growth simulation; and reverse restriction, which, from the ecological protection perspective, is supported by ecological security pattern construction, ecological sensitivity evaluation, and land suitability evaluation. (3) Many foreign UGB implementations have different forms and more flexible and comprehensive corresponding supporting policies. However, the current state of research in China in this area is still insufficient. Against the background of the national spatial planning system reform, the findings of this review provide references for delineating UGB that considers ecological protection and urban development under the scenarios of planning, formulating a supporting mechanism for multi-subject participation and multi-party coordination, and establishing an adjustment system based on implementation effect evaluation.

Suggested Citation

  • Xiaoyang Liu & Weihao Shi & Sen Zhang, 2022. "Progress of Research on Urban Growth Boundary and Its Implications in Chinese Studies Based on Bibliometric Analysis," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:16644-:d:1000175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/24/16644/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/24/16644/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fei Fan & Shangze Dai & Keke Zhang & Haiqian Ke, 2021. "Innovation agglomeration and urban hierarchy: evidence from Chinese cities," Applied Economics, Taylor & Francis Journals, vol. 53(54), pages 6300-6318, November.
    2. Huang, Daquan & Huang, Jing & Liu, Tao, 2019. "Delimiting urban growth boundaries using the CLUE-S model with village administrative boundaries," Land Use Policy, Elsevier, vol. 82(C), pages 422-435.
    3. Liu, Yansui & Zhou, Yang, 2021. "Territory spatial planning and national governance system in China," Land Use Policy, Elsevier, vol. 102(C).
    4. Penghui Jiang & Qianwen Cheng & Yuan Gong & Liyan Wang & Yunqian Zhang & Liang Cheng & Manchun Li & Jiancheng Lu & Yuewei Duan & Qiuhao Huang & Dong Chen, 2016. "Using Urban Development Boundaries to Constrain Uncontrolled Urban Sprawl in China," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 106(6), pages 1321-1343, November.
    5. Jain, Manisha & Korzhenevych, Artem & Pallagst, Karina, 2019. "Assessing growth management strategy: A case study of the largest rural-urban region in India," Land Use Policy, Elsevier, vol. 81(C), pages 1-12.
    6. Xiaoyang Liu & Ming Wei & Jian Zeng, 2020. "Simulating Urban Growth Scenarios Based on Ecological Security Pattern: A Case Study in Quanzhou, China," IJERPH, MDPI, vol. 17(19), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang Li & Jiang Zhu & Tao Liu & Xiangdong Yin & Jiangchun Yao & Hao Jiang & Bing Bu & Jianlong Yan & Yixuan Li & Zhangcheng Chen, 2023. "Quota and Space Allocations of New Urban Land Supported by Urban Growth Simulations: A Case Study of Guangzhou City, China," Land, MDPI, vol. 12(6), pages 1-21, June.
    2. Abdelmonaim Okacha & Adil Salhi & Kamal Abdelrahman & Hamid Fattasse & Kamal Lahrichi & Kaoutar Bakhouya & Biraj Kanti Mondal, 2024. "Balancing Environmental and Human Needs: Geographic Information System-Based Analytical Hierarchy Process Land Suitability Planning for Emerging Urban Areas in Bni Bouayach Amid Urban Transformation," Sustainability, MDPI, vol. 16(15), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Yi & Xi Guo & Yi Han & Jie Guo & Minghao Ou & Xiaomin Zhao, 2022. "Coupling Ecological Security Pattern Establishment and Construction Land Expansion Simulation for Urban Growth Boundary Delineation: Framework and Application," Land, MDPI, vol. 11(3), pages 1-18, March.
    2. Pankaj Bajracharya & Selima Sultana, 2022. "Examining the Use of Urban Growth Boundary for Future Urban Expansion of Chattogram, Bangladesh," Sustainability, MDPI, vol. 14(9), pages 1-21, May.
    3. Fan, Fei & Dai, Shangze & Yang, Bo & Ke, Haiqian, 2023. "Urban density, directed technological change, and carbon intensity: An empirical study based on Chinese cities," Technology in Society, Elsevier, vol. 72(C).
    4. Yiping Sun & Xiangyi Li & Tengyuan Zhang & Jiawei Fu, 2022. "Does Trade Policy Uncertainty Exacerbate Environmental Pollution?—Evidence from Chinese Cities," IJERPH, MDPI, vol. 19(4), pages 1-21, February.
    5. Shuangqing Sheng & Wei Song & Hua Lian & Lei Ning, 2022. "Review of Urban Land Management Based on Bibliometrics," Land, MDPI, vol. 11(11), pages 1-25, November.
    6. Rafael Morais Pereira & Ana Cláudia Azevedo & Fabio Emanuel Farago & Felipe Mendes Borini, 2024. "Technological intensity and local socio‐economic development," Journal of International Development, John Wiley & Sons, Ltd., vol. 36(2), pages 1043-1057, March.
    7. Dong Chen & Rongrong Liu & Maoxian Zhou, 2023. "Delineation of Urban Growth Boundary Based on Habitat Quality and Carbon Storage: A Case Study of Weiyuan County in Gansu, China," Land, MDPI, vol. 12(5), pages 1-17, May.
    8. Zhang, Zuo & Li, Jiaming, 2022. "Spatial suitability and multi-scenarios for land use: Simulation and policy insights from the production-living-ecological perspective," Land Use Policy, Elsevier, vol. 119(C).
    9. Jinping Lin & Meiqi Zhou & Huasong Luo & Bowen Zhang & Jiajia Feng & Qi Yi, 2022. "Analysis of the Emotional Identification Mechanism of Campus Edible Landscape from the Perspective of Emotional Geography: An Empirical Study of a Chinese University Town," IJERPH, MDPI, vol. 19(18), pages 1-16, September.
    10. Guo, Bingnan & Wang, Yu & Zhang, Hao & Liang, Chunyan & Feng, Yu & Hu, Feng, 2023. "Impact of the digital economy on high-quality urban economic development: Evidence from Chinese cities," Economic Modelling, Elsevier, vol. 120(C).
    11. Yu, Zhenning & She, Shuoqi & Xia, Chuyu & Luo, Jiaojiao, 2023. "How to solve the dilemma of China’s land fallow policy: Application of voluntary bidding mode in the Yangtze River Delta of China," Land Use Policy, Elsevier, vol. 125(C).
    12. Lijuan Zhang & Tatyana Ponomarenko, 2023. "Directions for Sustainable Development of China’s Coal Industry in the Post-Epidemic Era," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    13. Jiao Zhang & Qian Wang & Yiping Xia & Katsunori Furuya, 2022. "Knowledge Map of Spatial Planning and Sustainable Development: A Visual Analysis Using CiteSpace," Land, MDPI, vol. 11(3), pages 1-24, February.
    14. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    15. Changqing Sun & Yulong Bao & Battsengel Vandansambuu & Yuhai Bao, 2022. "Simulation and Prediction of Land Use/Cover Changes Based on CLUE-S and CA-Markov Models: A Case Study of a Typical Pastoral Area in Mongolia," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    16. Yusuyunjiang Mamitimin & Zibibula Simayi & Ayinuer Mamat & Bumairiyemu Maimaiti & Yunfei Ma, 2023. "FLUS Based Modeling of the Urban LULC in Arid and Semi-Arid Region of Northwest China: A Case Study of Urumqi City," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    17. Chasia, Stanley & Olang, Luke O. & Sitoki, Lewis, 2023. "Modelling of land-use/cover change trajectories in a transboundary catchment of the Sio-Malaba-Malakisi Region in East Africa using the CLUE-s model," Ecological Modelling, Elsevier, vol. 476(C).
    18. Yiwen Shao & Yao Sun & Zhiru Zheng, 2023. "How Do Comprehensive Territorial Plans Frame Resilience? A Content Analysis of Plans by Major Cities in China," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    19. Le Zhang & Qinyi Gu & Chen Li & Yi Huang, 2022. "Characteristics and Spatial–Temporal Differences of Urban “Production, Living and Ecological” Environmental Quality in China," IJERPH, MDPI, vol. 19(22), pages 1-22, November.
    20. Xu Dong & Yang Chen & Qinqin Zhuang & Yali Yang & Xiaomeng Zhao, 2022. "Agglomeration of Productive Services, Industrial Structure Upgrading and Green Total Factor Productivity: An Empirical Analysis Based on 68 Prefectural-Level-and-Above Cities in the Yellow River Basin," IJERPH, MDPI, vol. 19(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:16644-:d:1000175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.