IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i24p16505-d997792.html
   My bibliography  Save this article

Ecological Restoration Strategies for Mountainous Cities Based on Ecological Security Patterns and Circuit Theory: A Case of Central Urban Areas in Chongqing, China

Author

Listed:
  • Liang Lv

    (Key Laboratory of New Technology for Construction of Cities in Mountain Areas, School of Architecture and Urban Planning, Chongqing University, Chongqing 400044, China)

  • Shihao Zhang

    (Key Laboratory of New Technology for Construction of Cities in Mountain Areas, School of Architecture and Urban Planning, Chongqing University, Chongqing 400044, China)

  • Jie Zhu

    (Key Laboratory of New Technology for Construction of Cities in Mountain Areas, School of Architecture and Urban Planning, Chongqing University, Chongqing 400044, China)

  • Ziming Wang

    (Key Laboratory of New Technology for Construction of Cities in Mountain Areas, School of Architecture and Urban Planning, Chongqing University, Chongqing 400044, China)

  • Zhe Wang

    (Key Laboratory of New Technology for Construction of Cities in Mountain Areas, School of Architecture and Urban Planning, Chongqing University, Chongqing 400044, China)

  • Guoqing Li

    (Key Laboratory of New Technology for Construction of Cities in Mountain Areas, School of Architecture and Urban Planning, Chongqing University, Chongqing 400044, China)

  • Chen Yang

    (Key Laboratory of New Technology for Construction of Cities in Mountain Areas, School of Architecture and Urban Planning, Chongqing University, Chongqing 400044, China)

Abstract

Urban ecosystems are under enormous pressure in the background of rapid urbanization. Mountainous cities are more prone to degradation due to dramatic topography. Ecological security patterns combined with circuit theory can effectively identify ecological barriers and “pinch points” and propose targeted ecological restoration and protection strategies. In order to ensure the ecosystem health and sustainable development of mountainous cities, this paper applies the MSPA model, Invest model, MCR model, and Linkage Mapper Tools to identify the ecological source regions, eco-corridors, and “key points” in the central metropolitan area of Chongqing. The study shows that: (1) There are 43 ecological sources in the central urban area of Chongqing, with a total area of 986.56 km 2 , and it forms a linear distribution with a multi-patch scattering pattern. (2) A series of 86 ecological corridors in the area, totaling 315.14 km, show a pattern of more corridors in the east and fewer in the west. (3) The research found 17 sites totaling 24.20 km of the ecological corridor in the barrier point zone. In addition, up to 22 segments, totaling 19.27 km of the ecological corridor, are located in the “pinch point” zone. (4) The barrier point and “pinch point” on the ecological corridors are identified to obtain their type, scale, and location, thus suggesting conservation-restoration.

Suggested Citation

  • Liang Lv & Shihao Zhang & Jie Zhu & Ziming Wang & Zhe Wang & Guoqing Li & Chen Yang, 2022. "Ecological Restoration Strategies for Mountainous Cities Based on Ecological Security Patterns and Circuit Theory: A Case of Central Urban Areas in Chongqing, China," IJERPH, MDPI, vol. 19(24), pages 1-21, December.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:16505-:d:997792
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/24/16505/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/24/16505/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mansour, Shawky & Al-Belushi, Mohammed & Al-Awadhi, Talal, 2020. "Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques," Land Use Policy, Elsevier, vol. 91(C).
    2. Siqi Yi & Yong Zhou & Qing Li, 2022. "A New Perspective for Urban Development Boundary Delineation Based on the MCR Model and CA-Markov Model," Land, MDPI, vol. 11(3), pages 1-16, March.
    3. Xinke Wang & Xiangqun Xie & Zhenfeng Wang & Hong Lin & Yan Liu & Huili Xie & Xingzhao Liu, 2022. "Construction and Optimization of an Ecological Security Pattern Based on the MCR Model: A Case Study of the Minjiang River Basin in Eastern China," IJERPH, MDPI, vol. 19(14), pages 1-20, July.
    4. Chunxiao Zhang & Chun Jia & Huanggen Gao & Shiguang Shen, 2022. "Ecological Security Pattern Construction in Hilly Areas Based on SPCA and MCR: A Case Study of Nanchong City, China," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    5. Hui Ye & Zhaoping Yang & Xiaoliang Xu, 2020. "Ecological Corridors Analysis Based on MSPA and MCR Model—A Case Study of the Tomur World Natural Heritage Region," Sustainability, MDPI, vol. 12(3), pages 1-15, January.
    6. Andreo-Martínez, Pedro & Ortiz-Martínez, Víctor Manuel & García-Martínez, Nuria & de los Ríos, Antonia Pérez & Hernández-Fernández, Francisco José & Quesada-Medina, Joaquín, 2020. "Production of biodiesel under supercritical conditions: State of the art and bibliometric analysis," Applied Energy, Elsevier, vol. 264(C).
    7. Shaokun Zhou & Yuhong Song & Yijiao Li & Jing Wang & Lan Zhang, 2022. "Construction of Ecological Security Pattern for Plateau Lake Based on MSPA–MCR Model: A Case Study of Dianchi Lake Area," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    8. Feng Tang & Xu Zhou & Li Wang & Yangjian Zhang & Meichen Fu & Pengtao Zhang, 2021. "Linking Ecosystem Service and MSPA to Construct Landscape Ecological Network of the Huaiyang Section of the Grand Canal," Land, MDPI, vol. 10(9), pages 1-23, August.
    9. Oh-Sung Kwon & Jin-Hyo Kim & Jung-Hwa Ra, 2021. "Landscape Ecological Analysis of Green Network in Urban Area Using Circuit Theory and Least-Cost Path," Land, MDPI, vol. 10(8), pages 1-23, August.
    10. Yu, Binbin, 2021. "Ecological effects of new-type urbanization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Mingxing Chen & Yuan Zhou & Xinrong Huang & Chao Ye, 2021. "The Integration of New-Type Urbanization and Rural Revitalization Strategies in China: Origin, Reality and Future Trends," Land, MDPI, vol. 10(2), pages 1-16, February.
    12. Zhenfeng Wang & Yan Liu & Xiangqun Xie & Xinke Wang & Hong Lin & Huili Xie & Xingzhao Liu, 2022. "Identifying Key Areas of Green Space for Ecological Restoration Based on Ecological Security Patterns in Fujian Province, China," Land, MDPI, vol. 11(9), pages 1-19, September.
    13. Calder, Ryan S.D. & Shi, Congjie & Mason, Sara A. & Olander, Lydia P. & Borsuk, Mark E., 2019. "Forecasting ecosystem services to guide coastal wetland rehabilitation decisions," Ecosystem Services, Elsevier, vol. 39(C).
    14. Fachao Liang & Mengdi Bai & Qiyu Hu & Sheng-Hau Lin, 2022. "Ecological Security and Ecosystem Quality: A Case Study of Xia-Zhang-Quan Metropolitan Area in China," Land, MDPI, vol. 11(5), pages 1-14, May.
    15. Yu Han & Chaoyue Yu & Zhe Feng & Hanchu Du & Caisi Huang & Kening Wu, 2021. "Construction and Optimization of Ecological Security Pattern Based on Spatial Syntax Classification—Taking Ningbo, China, as an Example," Land, MDPI, vol. 10(4), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunhua Li & Jin Wang & Xincen Liu & Kejian Xu, 2024. "Construction of Karst Landscape Ecological Security Pattern Based on Conflict between Human and Nature in Puzhehei," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
    2. Huihui Yang & Shuiyu Yan & Xinhao Wang & Chun Li & Haixing Meng & Qiang Yao, 2024. "Constructing Ecological Networks Based on Ecosystem Services and Network Analysis in Chongqing, China," Land, MDPI, vol. 13(5), pages 1-24, May.
    3. Fengyu Wang & Shuai Tong & Yun Chu & Tianlong Liu & Xiang Ji, 2023. "Spatio-Temporal Evolution of Key Areas of Territorial Ecological Restoration in Resource-Exhausted Cities: A Case Study of Jiawang District, China," Land, MDPI, vol. 12(9), pages 1-25, September.
    4. Shan Ke & Hui Pan & Bowen Jin, 2023. "Identification of Priority Areas for Ecological Restoration Based on Human Disturbance and Ecological Security Patterns: A Case Study of Fuzhou City, China," Sustainability, MDPI, vol. 15(3), pages 1-26, February.
    5. Yanhai Zhou & Jianwei Geng & Xingzhao Liu, 2024. "Urban Habitat Quality Enhancement and Optimization under Ecological Network Constraints," Land, MDPI, vol. 13(10), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan Ke & Hui Pan & Bowen Jin, 2023. "Identification of Priority Areas for Ecological Restoration Based on Human Disturbance and Ecological Security Patterns: A Case Study of Fuzhou City, China," Sustainability, MDPI, vol. 15(3), pages 1-26, February.
    2. Fengyu Wang & Shuai Tong & Yun Chu & Tianlong Liu & Xiang Ji, 2023. "Spatio-Temporal Evolution of Key Areas of Territorial Ecological Restoration in Resource-Exhausted Cities: A Case Study of Jiawang District, China," Land, MDPI, vol. 12(9), pages 1-25, September.
    3. Yuqi Zhu & Siwei Shen & Linyu Du & Jun Fu & Jian Zou & Lina Peng & Rui Ding, 2023. "Spatial and Temporal Interaction Coupling of Digital Economy, New-Type Urbanization and Land Ecology and Spatial Effects Identification: A Study of the Yangtze River Delta," Land, MDPI, vol. 12(3), pages 1-27, March.
    4. Milad Asadi & Amir Oshnooei-Nooshabadi & Samira-Sadat Saleh & Fattaneh Habibnezhad & Sonia Sarafraz-Asbagh & John Lodewijk Van Genderen, 2022. "Urban Sprawl Simulation Mapping of Urmia (Iran) by Comparison of Cellular Automata–Markov Chain and Artificial Neural Network (ANN) Modeling Approach," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    5. Tianlin Zhai & Jing Wang & Ying Fang & Jingjing Liu & Longyang Huang & Kun Chen & Chenchen Zhao, 2021. "Identification and Prediction of Wetland Ecological Risk in Key Cities of the Yangtze River Economic Belt: From the Perspective of Land Development," Sustainability, MDPI, vol. 13(1), pages 1-17, January.
    6. Bin Liao, 2024. "Does New Urbanization Promote Urban Metabolic Efficiency?," Sustainability, MDPI, vol. 16(2), pages 1-20, January.
    7. Kaimeng Li & Shuang Gao & Yuantao Liao & Ke Luo & Shaojian Wang, 2022. "The Impact of Development Zones on China’s Urbanization from the Perspectives of the Population, Land, and the Economy," Land, MDPI, vol. 11(10), pages 1-16, October.
    8. Zhenfeng Wang & Yan Liu & Xiangqun Xie & Xinke Wang & Hong Lin & Huili Xie & Xingzhao Liu, 2022. "Identifying Key Areas of Green Space for Ecological Restoration Based on Ecological Security Patterns in Fujian Province, China," Land, MDPI, vol. 11(9), pages 1-19, September.
    9. Jiaqi Hu & Sheng Jiao & Huiwen Xia & Qiaoyun Qian, 2023. "Construction of Rural Multifunctional Landscape Corridor Based on MSPA and MCR Model—Taking Liukeng Cultural and Ecological Tourism Area as an Example," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    10. Xinlei Xu & Siyuan Wang & Gege Yan & Xinyi He, 2023. "Ecological Security Assessment Based on the “Importance–Sensitivity–Connectivity” Index and Pattern Construction: A Case Study of Xiliu Ditch in the Yellow River Basin, China," Land, MDPI, vol. 12(7), pages 1-23, June.
    11. Yimin Li & Juanzhen Zhao & Jing Yuan & Peikun Ji & Xuanlun Deng & Yiming Yang, 2022. "Constructing the Ecological Security Pattern of Nujiang Prefecture Based on the Framework of “Importance–Sensitivity–Connectivity”," IJERPH, MDPI, vol. 19(17), pages 1-21, August.
    12. Zeng, Lijun & Zhang, Wencheng & Zhao, Yue & Zhang, Jinsuo & Jiang, Xiujuan, 2024. "Simulation analysis of Chinese new-type urbanization policy in mineral resource abundant regions based on the CGE model," Resources Policy, Elsevier, vol. 90(C).
    13. Yanping Yang & Jianjun Chen & Renjie Huang & Zihao Feng & Guoqing Zhou & Haotian You & Xiaowen Han, 2022. "Construction of Ecological Security Pattern Based on the Importance of Ecological Protection—A Case Study of Guangxi, a Karst Region in China," IJERPH, MDPI, vol. 19(9), pages 1-22, May.
    14. Mengyuan Su & Xiaoqian Fang & Kaiying Sun & Jiahao Bao & Yu Cao, 2023. "Construction and Optimization of an Ecological Network in the Comprehensive Land Consolidation Project of a Small Rural Town in Southeast China," Sustainability, MDPI, vol. 15(7), pages 1-20, March.
    15. Xifan Chen & Lihua Xu & Rusong Zhu & Qiwei Ma & Yijun Shi & Zhangwei Lu, 2022. "Changes and Characteristics of Green Infrastructure Network Based on Spatio-Temporal Priority," Land, MDPI, vol. 11(6), pages 1-17, June.
    16. Qing Liu & Dongdong Yang & Lei Cao & Bruce Anderson, 2022. "Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China," Land, MDPI, vol. 11(2), pages 1-24, February.
    17. Lin, Boqiang & Zhou, Yicheng, 2021. "How does vertical fiscal imbalance affect the upgrading of industrial structure? Empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    18. Zhang, Zuo & Li, Jiaming, 2022. "Spatial suitability and multi-scenarios for land use: Simulation and policy insights from the production-living-ecological perspective," Land Use Policy, Elsevier, vol. 119(C).
    19. Abdulaziz I. Almulhim & Simon Elias Bibri & Ayyoob Sharifi & Shakil Ahmad & Khalid Mohammed Almatar, 2022. "Emerging Trends and Knowledge Structures of Urbanization and Environmental Sustainability: A Regional Perspective," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    20. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:16505-:d:997792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.