IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i10p1640-d1494723.html
   My bibliography  Save this article

Urban Habitat Quality Enhancement and Optimization under Ecological Network Constraints

Author

Listed:
  • Yanhai Zhou

    (College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

  • Jianwei Geng

    (College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

  • Xingzhao Liu

    (College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

Abstract

The process of urbanization leads to the rapid expansion of construction land and brings a series of ecological and environmental problems. The ecological network, as a linear landscape element, is of great significance to improve the quality of the regional ecological environment. In this study, the Morphological Spatial Pattern Analysis (MSPA) and the model of Minimum Cumulative Resistance (MCR) were used to construct the ecological corridors in the central city of Fuzhou, and the land use pattern under the constraints of the ecological network was simulated and quantified by the patch-level land use simulation (PLUS) tool with the results of the identification of ecological corridors. Meanwhile, with the help of InVEST habitat quality model, the regional habitat quality under different development scenarios was compared. The results show that (1) 19 ecological sources and 35 ecological corridors were identified; (2) under the constraints of ecological corridors, the area of forested land in the study area in 2027 was increased by 1.57% and the area of built-up land was reduced by 0.55% compared with that in 2022; (3) and under the constraints of ecological corridors, the mean value of habitat quality in Fuzhou City improved by 0.0055 and 0.0254 compared with 2022 and 2027 natural evolution scenarios, respectively. The study provides decision-making assistance for the construction of ecological corridors from the perspective of land use planning.

Suggested Citation

  • Yanhai Zhou & Jianwei Geng & Xingzhao Liu, 2024. "Urban Habitat Quality Enhancement and Optimization under Ecological Network Constraints," Land, MDPI, vol. 13(10), pages 1-18, October.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:10:p:1640-:d:1494723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/10/1640/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/10/1640/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang Lv & Shihao Zhang & Jie Zhu & Ziming Wang & Zhe Wang & Guoqing Li & Chen Yang, 2022. "Ecological Restoration Strategies for Mountainous Cities Based on Ecological Security Patterns and Circuit Theory: A Case of Central Urban Areas in Chongqing, China," IJERPH, MDPI, vol. 19(24), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hejie Wei & Qing Han & Yu Ma & Wenfeng Ji & Weiguo Fan & Mengxue Liu & Junchang Huang & Ling Li, 2024. "Multi-Scenario Simulating the Effects of Land Use Change on Ecosystem Health for Rural Ecological Management in the Zheng–Bian–Luo Rural Area, Central China," Land, MDPI, vol. 13(11), pages 1-28, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunhua Li & Jin Wang & Xincen Liu & Kejian Xu, 2024. "Construction of Karst Landscape Ecological Security Pattern Based on Conflict between Human and Nature in Puzhehei," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
    2. Huihui Yang & Shuiyu Yan & Xinhao Wang & Chun Li & Haixing Meng & Qiang Yao, 2024. "Constructing Ecological Networks Based on Ecosystem Services and Network Analysis in Chongqing, China," Land, MDPI, vol. 13(5), pages 1-24, May.
    3. Fengyu Wang & Shuai Tong & Yun Chu & Tianlong Liu & Xiang Ji, 2023. "Spatio-Temporal Evolution of Key Areas of Territorial Ecological Restoration in Resource-Exhausted Cities: A Case Study of Jiawang District, China," Land, MDPI, vol. 12(9), pages 1-25, September.
    4. Shan Ke & Hui Pan & Bowen Jin, 2023. "Identification of Priority Areas for Ecological Restoration Based on Human Disturbance and Ecological Security Patterns: A Case Study of Fuzhou City, China," Sustainability, MDPI, vol. 15(3), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:10:p:1640-:d:1494723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.