IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i23p15583-d982456.html
   My bibliography  Save this article

Dietary Exposure Assessment of Rare Earth Elements in the Chinese Population

Author

Listed:
  • Daoyuan Yang

    (NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China)

  • Haixia Sui

    (NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China)

  • Weifeng Mao

    (NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China)

  • Yibaina Wang

    (NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China)

  • Dajin Yang

    (NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China)

  • Lei Zhang

    (NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China)

  • Zhaoping Liu

    (NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China)

  • Ling Yong

    (NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China)

  • Yan Song

    (NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China)

Abstract

Rare earth elements (REEs) are widely found in foods. A high intake of REEs may have associations with adverse effects on human health. This study aimed to investigate the concentrations of REEs in foods in China and to assess the risk of dietary REEs exposure in the Chinese population. The mean concentrations of the total REEs in 27,457 food samples from 11 food categories ranged from 0.04 to 1.41 mg/kg. The daily mean dietary exposure of the total REEs was 1.62 μg/kg BW in the general Chinese population and ranged from 1.61 to 2.80 μg/kg BW in different sex–age groups. The high consumer exposure (95th percentile, P95) was 4.83 μg/kg BW, 9.38% of the temporary ADI (tADI) of REEs (51.5 μg/kg BW). None of the P95 exposure exceeded the tADI in all of the sub-groups. Lanthanum, cerium, and yttrium accounted for approximately 63% of the total exposure of the 16 REEs. The hazard index of 16 REEs was far below 1. Therefore, the health risk of dietary REEs exposure in the general Chinese population was low. No cumulative risk was found for the 16 REEs in China. The results indicate there was no need to stipulate the limits of REEs in foods.

Suggested Citation

  • Daoyuan Yang & Haixia Sui & Weifeng Mao & Yibaina Wang & Dajin Yang & Lei Zhang & Zhaoping Liu & Ling Yong & Yan Song, 2022. "Dietary Exposure Assessment of Rare Earth Elements in the Chinese Population," IJERPH, MDPI, vol. 19(23), pages 1-12, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:15583-:d:982456
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/23/15583/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/23/15583/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nawshad Haque & Anthony Hughes & Seng Lim & Chris Vernon, 2014. "Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact," Resources, MDPI, vol. 3(4), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madaleno, Mara & Taskin, Dilvin & Dogan, Eyup & Tzeremes, Panayiotis, 2023. "A dynamic connectedness analysis between rare earth prices and renewable energy," Resources Policy, Elsevier, vol. 85(PB).
    2. Fortune Ganda, 2024. "Investigating the Relationship and Impact of Environmental Governance, Green Goods, Non-Green Goods and Eco-Innovation on Material Footprint and Renewable Energy in the BRICS Group," Sustainability, MDPI, vol. 16(4), pages 1-21, February.
    3. Wei Chen & Huang Honghui & Tian Bai & Shaoyong Jiang, 2017. "Geochemistry of Monazite within Carbonatite Related REE Deposits," Resources, MDPI, vol. 6(4), pages 1-15, September.
    4. Haimei Chen & Haibin Chen & Levente Kardos & Veronika Szabó, 2023. "Application of Biochar for Ion-Adsorption of Rare Earth Contaminated Soil Remediation: A Review," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    5. Claire L. McLeod & Mark. P. S. Krekeler, 2017. "Sources of Extraterrestrial Rare Earth Elements: To the Moon and Beyond," Resources, MDPI, vol. 6(3), pages 1-28, August.
    6. Uslu, Samet & Celik, Mehmet, 2023. "Response surface methodology-based optimization of the amount of cerium dioxide (CeO2) to increase the performance and reduce emissions of a diesel engine fueled by cerium dioxide/diesel blends," Energy, Elsevier, vol. 266(C).
    7. Maasago M. Sepadi & Martha Chadyiwa & Vusumuzi Nkosi, 2020. "Platinum Mine Workers’ Exposure to Dust Particles Emitted at Mine Waste Rock Crusher Plants in Limpopo, South Africa," IJERPH, MDPI, vol. 17(2), pages 1-12, January.
    8. Anthony E. Hughes & Nawshad Haque & Stephen A. Northey & Sarbjit Giddey, 2021. "Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts," Resources, MDPI, vol. 10(9), pages 1-40, September.
    9. York R. Smith & Pankaj Kumar & John D. McLennan, 2017. "On the Extraction of Rare Earth Elements from Geothermal Brines," Resources, MDPI, vol. 6(3), pages 1-16, August.
    10. Brown, Rebecca M. & Mirkouei, Amin & Reed, David & Thompson, Vicki, 2023. "Current nature-based biological practices for rare earth elements extraction and recovery: Bioleaching and biosorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    11. Andrea Schreiber & Josefine Marx & Petra Zapp & Jürgen-Friedrich Hake & Daniel Voßenkaul & Bernd Friedrich, 2016. "Environmental Impacts of Rare Earth Mining and Separation Based on Eudialyte: A New European Way," Resources, MDPI, vol. 5(4), pages 1-22, October.
    12. Erika Machacek & Jessika Luth Richter & Ruth Lane, 2017. "Governance and Risk–Value Constructions in Closing Loops of Rare Earth Elements in Global Value Chains," Resources, MDPI, vol. 6(4), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:15583-:d:982456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.