IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v5y2016i4p32-d81501.html
   My bibliography  Save this article

Environmental Impacts of Rare Earth Mining and Separation Based on Eudialyte: A New European Way

Author

Listed:
  • Andrea Schreiber

    (Institute of Energy and Climate Research—Systems Analysis and Technology Evaluation (IEK-STE), Forschungszentrum Jülich, Jülich D-52425, Germany)

  • Josefine Marx

    (Institute of Energy and Climate Research—Systems Analysis and Technology Evaluation (IEK-STE), Forschungszentrum Jülich, Jülich D-52425, Germany)

  • Petra Zapp

    (Institute of Energy and Climate Research—Systems Analysis and Technology Evaluation (IEK-STE), Forschungszentrum Jülich, Jülich D-52425, Germany)

  • Jürgen-Friedrich Hake

    (Institute of Energy and Climate Research—Systems Analysis and Technology Evaluation (IEK-STE), Forschungszentrum Jülich, Jülich D-52425, Germany)

  • Daniel Voßenkaul

    (Institute of Process Metallurgy and Metal (IME), RWTH Aachen University, Intzestraße 3, Aachen D-52056, Germany)

  • Bernd Friedrich

    (Institute of Process Metallurgy and Metal (IME), RWTH Aachen University, Intzestraße 3, Aachen D-52056, Germany)

Abstract

Neodymium and dysprosium are two rare earth elements (REEs), out of a group of 17 elements. Due to their unique properties, REEs gained increasing importance in many new technologies, like wind turbines, batteries, etc. However, the production of REEs requires high material and energy consumption and is associated with considerable environmental burdens. Due to the strong dependency of European industry on Chinese REE exports, this paper presents a possible European production chain of REEs based on the mineral eudialyte found in Norra Kärr (Sweden). This European production is compared to a Chinese route, as China produces more than 85% of today’s REEs. Bayan Obo as the largest REE deposit in China is considered as the reference system. Using the life cycle assessment method, the environmental impacts of both production lines are assessed. This study presents newly-estimated data of a possible Swedish eudialyte-based production route for Europe. Results for the new eudialyte process route show reduced environmental burdens, although the total REE content in eudialyte is much smaller than in the Bayan Obo deposit. Especially, the results for dysprosium from eudialyte outreach those for Bayan Obo due to the higher content of heavy rare earth elements.

Suggested Citation

  • Andrea Schreiber & Josefine Marx & Petra Zapp & Jürgen-Friedrich Hake & Daniel Voßenkaul & Bernd Friedrich, 2016. "Environmental Impacts of Rare Earth Mining and Separation Based on Eudialyte: A New European Way," Resources, MDPI, vol. 5(4), pages 1-22, October.
  • Handle: RePEc:gam:jresou:v:5:y:2016:i:4:p:32-:d:81501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/5/4/32/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/5/4/32/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vahidi, Ehsan & Navarro, Julio & Zhao, Fu, 2016. "An initial life cycle assessment of rare earth oxides production from ion-adsorption clays," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 1-11.
    2. Golev, Artem & Scott, Margaretha & Erskine, Peter D. & Ali, Saleem H. & Ballantyne, Grant R., 2014. "Rare earths supply chains: Current status, constraints and opportunities," Resources Policy, Elsevier, vol. 41(C), pages 52-59.
    3. Nawshad Haque & Anthony Hughes & Seng Lim & Chris Vernon, 2014. "Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact," Resources, MDPI, vol. 3(4), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    2. Razzaq, Asif & Sharif, Arshian & Ozturk, Ilhan & Skare, Marinko, 2022. "Inclusive infrastructure development, green innovation, and sustainable resource management: Evidence from China’s trade-adjusted material footprints," Resources Policy, Elsevier, vol. 79(C).
    3. Haimei Chen & Haibin Chen & Levente Kardos & Veronika Szabó, 2023. "Application of Biochar for Ion-Adsorption of Rare Earth Contaminated Soil Remediation: A Review," Sustainability, MDPI, vol. 15(10), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erika Machacek & Jessika Luth Richter & Ruth Lane, 2017. "Governance and Risk–Value Constructions in Closing Loops of Rare Earth Elements in Global Value Chains," Resources, MDPI, vol. 6(4), pages 1-25, October.
    2. Claire L. McLeod & Mark. P. S. Krekeler, 2017. "Sources of Extraterrestrial Rare Earth Elements: To the Moon and Beyond," Resources, MDPI, vol. 6(3), pages 1-28, August.
    3. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    4. Cherepovitsyn, Alexey & Solovyova, Victoria & Dmitrieva, Diana, 2023. "New challenges for the sustainable development of the rare-earth metals sector in Russia: Transforming industrial policies," Resources Policy, Elsevier, vol. 81(C).
    5. Machacek, Erika & Fold, Niels, 2014. "Alternative value chains for rare earths: The Anglo-deposit developers," Resources Policy, Elsevier, vol. 42(C), pages 53-64.
    6. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    7. Ge, Jianping & Lei, Yalin, 2018. "Resource tax on rare earths in China: Policy evolution and market responses," Resources Policy, Elsevier, vol. 59(C), pages 291-297.
    8. Packey, Daniel J. & Kingsnorth, Dudley, 2016. "The impact of unregulated ionic clay rare earth mining in China," Resources Policy, Elsevier, vol. 48(C), pages 112-116.
    9. Madaleno, Mara & Taskin, Dilvin & Dogan, Eyup & Tzeremes, Panayiotis, 2023. "A dynamic connectedness analysis between rare earth prices and renewable energy," Resources Policy, Elsevier, vol. 85(PB).
    10. Chen, Yufeng & Zheng, Biao & Qu, Fang, 2020. "Modeling the nexus of crude oil, new energy and rare earth in China: An asymmetric VAR-BEKK (DCC)-GARCH approach," Resources Policy, Elsevier, vol. 65(C).
    11. Amanda Qinisile Vilakazi & Sehliselo Ndlovu & Liberty Chipise & Alan Shemi, 2022. "The Recycling of Coal Fly Ash: A Review on Sustainable Developments and Economic Considerations," Sustainability, MDPI, vol. 14(4), pages 1-32, February.
    12. Schlinkert, Dominik & van den Boogaart, Karl Gerald, 2015. "The development of the market for rare earth elements: Insights from economic theory," Resources Policy, Elsevier, vol. 46(P2), pages 272-280.
    13. Fortune Ganda, 2024. "Investigating the Relationship and Impact of Environmental Governance, Green Goods, Non-Green Goods and Eco-Innovation on Material Footprint and Renewable Energy in the BRICS Group," Sustainability, MDPI, vol. 16(4), pages 1-21, February.
    14. Xia, Qifan & Du, Debin & Cao, Wanpeng & Li, Xiya, 2023. "Who is the core? Reveal the heterogeneity of global rare earth trade structure from the perspective of industrial chain," Resources Policy, Elsevier, vol. 82(C).
    15. Dongmin Son & Songi Kim & Hyungbin Park & Bongju Jeong, 2018. "Closed-Loop Supply Chain Planning Model of Rare Metals," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    16. Zuo, Zhili & Cheng, Jinhua & Guo, Haixiang & Li, Yonglin, 2021. "Knowledge mapping of research on strategic mineral resource security: A visual analysis using CiteSpace," Resources Policy, Elsevier, vol. 74(C).
    17. Li, Chen & Mogollón, José M. & Tukker, Arnold & Dong, Jianning & von Terzi, Dominic & Zhang, Chunbo & Steubing, Bernhard, 2022. "Future material requirements for global sustainable offshore wind energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    18. Wei Chen & Huang Honghui & Tian Bai & Shaoyong Jiang, 2017. "Geochemistry of Monazite within Carbonatite Related REE Deposits," Resources, MDPI, vol. 6(4), pages 1-15, September.
    19. Hau, Liya & Zhu, Huiming & Yu, Yang & Yu, Dongwei, 2022. "Time-frequency coherence and quantile causality between trade policy uncertainty and rare earth prices: Evidence from China and the US," Resources Policy, Elsevier, vol. 75(C).
    20. Isabella Tamine Parra Miranda & Juliana Moletta & Bruno Pedroso & Luiz Alberto Pilatti & Claudia Tania Picinin, 2021. "A Review on Green Technology Practices at BRICS Countries: Brazil, Russia, India, China, and South Africa," SAGE Open, , vol. 11(2), pages 21582440211, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:5:y:2016:i:4:p:32-:d:81501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.