IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i21p14138-d957210.html
   My bibliography  Save this article

Assessment of the Actual Toxicity of Engine Exhaust Gas Emissions from Euro 3 and Euro 6 Compliant Vehicles with the BAT-CELL Method Using In Vitro Tests

Author

Listed:
  • Aleksandra Kęska

    (GEO-3EM Research Centre, Department of Automotive Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Na Grobli 13, 50-421 Wrocław, Poland)

  • Anna Janicka

    (GEO-3EM Research Centre, Department of Automotive Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Na Grobli 13, 50-421 Wrocław, Poland)

  • Maciej Zawiślak

    (GEO-3EM Research Centre, Department of Automotive Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Na Grobli 13, 50-421 Wrocław, Poland)

  • Justyna Molska

    (GEO-3EM Research Centre, Department of Automotive Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Na Grobli 13, 50-421 Wrocław, Poland)

  • Radosław Włostowski

    (GEO-3EM Research Centre, Department of Automotive Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Na Grobli 13, 50-421 Wrocław, Poland)

  • Adriana Włóka

    (GEO-3EM Research Centre, Department of Automotive Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Na Grobli 13, 50-421 Wrocław, Poland)

  • Joanna Świeściak

    (GEO-3EM Research Centre, Department of Automotive Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Na Grobli 13, 50-421 Wrocław, Poland)

  • Kacper Ostrowski

    (GEO-3EM Research Centre, Department of Automotive Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Na Grobli 13, 50-421 Wrocław, Poland)

Abstract

Legal restrictions on vehicle engine exhaust gas emission control do not always go hand in hand with an actual reduction in the emissions of toxins into the atmosphere. Moreover, the methods currently used to measure exhaust gas emissions do not give unambiguous results on the impact of the tested gases on living organisms. The method used to assess the actual toxicity of gases, BAT-CELL Bio-Ambient-Tests using in vitro tests, takes into account synergistic interactions of individual components of a mixture of gases without the need to know its qualitative and quantitative composition and allows for determination of the actual toxicity of the gas composition. Using the BAT-CELL method, exhaust gases from passenger vehicles equipped with spark-ignition engines complying with the Euro 3 and Euro 6 emission standards were tested. The results of toxicological tests were correlated with the results of chromatographic analysis. It was shown that diverse qualitative composition of the mixture of hydrocarbons determining the exhaust gases toxicity may decrease the percentage value of cell survival. Additionally, it was proven that the average survival of cells after exposure to exhaust gases from tested vehicles meeting the more restrictive Euro 6 standard was lower than for vehicles meeting the Euro 3 standard thus indicating the higher toxicity of exhaust gases from newer vehicles.

Suggested Citation

  • Aleksandra Kęska & Anna Janicka & Maciej Zawiślak & Justyna Molska & Radosław Włostowski & Adriana Włóka & Joanna Świeściak & Kacper Ostrowski, 2022. "Assessment of the Actual Toxicity of Engine Exhaust Gas Emissions from Euro 3 and Euro 6 Compliant Vehicles with the BAT-CELL Method Using In Vitro Tests," IJERPH, MDPI, vol. 19(21), pages 1-15, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14138-:d:957210
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/21/14138/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/21/14138/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mera, Zamir & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2019. "Analysis of the high instantaneous NOx emissions from Euro 6 diesel passenger cars under real driving conditions," Applied Energy, Elsevier, vol. 242(C), pages 1074-1089.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    2. Mera, Zamir & Varella, Roberto & Baptista, Patrícia & Duarte, Gonçalo & Rosero, Fredy, 2022. "Including engine data for energy and pollutants assessment into the vehicle specific power methodology," Applied Energy, Elsevier, vol. 311(C).
    3. Xingyu Liang & Ziyang Liu & Kun Wang & Xiaohui Wang & Zhijie Zhu & Chaoyang Xu & Bo Liu, 2021. "Impact of Pilot Injection on Combustion and Emission Characteristics of a Low-Speed Two-Stroke Marine Diesel Engine," Energies, MDPI, vol. 14(2), pages 1-20, January.
    4. Zhang, Zhiqing & Zhong, Weihuang & Mao, Chengfang & Xu, Yuejiang & Lu, Kai & Ye, Yanshuai & Guan, Wei & Pan, Mingzhang & Tan, Dongli, 2024. "Multi-objective optimization of Fe-based SCR catalyst on the NOx conversion efficiency for a diesel engine based on FGRA-ANN/RF," Energy, Elsevier, vol. 294(C).
    5. Hu, Wenshuo & Zhang, Yu & Wang, Xiaoxiang & Wu, Weihong & Song, Hao & Yang, Yang & Liu, Shaojun & Zheng, Chenghang & Gao, Xiang, 2023. "Mechanistic assessment of NO oxidative activation on tungsten-promoted ceria catalysts and its consequence for low-temperature NH3-SCR," Applied Energy, Elsevier, vol. 330(PA).
    6. Ricardo Suarez-Bertoa & Roberto Gioria & Christian Ferrarese & Lorenzo Finocchiaro & Barouch Giechaskiel, 2024. "Alternative Analyzers for the Measurement of Gaseous Compounds During Type-Approval of Heavy-Duty Vehicles," Energies, MDPI, vol. 17(22), pages 1-18, November.
    7. Karol Tucki, 2021. "A Computer Tool for Modelling CO 2 Emissions in Driving Tests for Vehicles with Diesel Engines," Energies, MDPI, vol. 14(2), pages 1-30, January.
    8. Jacek Pielecha & Kinga Skobiej & Karolina Kurtyka, 2020. "Exhaust Emissions and Energy Consumption Analysis of Conventional, Hybrid, and Electric Vehicles in Real Driving Cycles," Energies, MDPI, vol. 13(23), pages 1-21, December.
    9. Rosero, Fredy & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2021. "Effects of passenger load, road grade, and congestion level on real-world fuel consumption and emissions from compressed natural gas and diesel urban buses," Applied Energy, Elsevier, vol. 282(PB).
    10. Roso, Vinícius Rückert & Santos, Nathália Duarte Souza Alvarenga & Valle, Ramon Molina & Alvarez, Carlos Eduardo Castilla & Monsalve-Serrano, Javier & García, Antonio, 2019. "Evaluation of a stratified prechamber ignition concept for vehicular applications in real world and standardized driving cycles," Applied Energy, Elsevier, vol. 254(C).
    11. Benaitier, Alexis & Krainer, Ferdinand & Jakubek, Stefan & Hametner, Christoph, 2023. "Optimal energy management of hybrid electric vehicles considering pollutant emissions during transient operations," Applied Energy, Elsevier, vol. 344(C).
    12. Su, Sheng & Ge, Yang & Hou, Pan & Wang, Xin & Wang, Yachao & Lyu, Tao & Luo, Wanyou & Lai, Yitu & Ge, Yunshan & Lyu, Liqun, 2021. "China VI heavy-duty moving average window (MAW) method: Quantitative analysis of the problem, causes, and impacts based on the real driving data," Energy, Elsevier, vol. 225(C).
    13. Eugenio Fernández & Alicia Valero & Juan José Alba & Abel Ortego, 2021. "A New Approach for Static NOx Measurement in PTI," Sustainability, MDPI, vol. 13(23), pages 1-34, December.
    14. Yang, Yichen & Cao, Tianyu & Xu, Shangzhi & Qian, Yeqing & Li, Zhipeng, 2022. "Influence of driving style on traffic flow fuel consumption and emissions based on the field data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    15. Barouch Giechaskiel & Victor Valverde & Anastasios Melas & Michaël Clairotte & Pierre Bonnel & Panagiota Dilara, 2024. "Comparison of the Real-Driving Emissions (RDE) of a Gasoline Direct Injection (GDI) Vehicle at Different Routes in Europe," Energies, MDPI, vol. 17(6), pages 1-19, March.
    16. Qiao, Junhao & Chen, Fan & Liu, Jingping & Guan, Jinhuan & Wang, Shuqian & Li, Yangyang, 2024. "Numerical study on the performance, combustion characteristics and energy flow distribution of gasoline-powered vehicle under synthetic actual driving test cycle," Energy, Elsevier, vol. 293(C).
    17. Hyung Jun Kim & Sang Hyun Lee & Sang Il Kwon & Sangki Park & Jonghak Lee & Ji Hoon Keel & Jong Tae Lee & Suhan Park, 2020. "Investigation of the Emission Characteristics of Light-Duty Diesel Vehicles in Korea Based on EURO-VI Standards According to Type of After-Treatment System," Energies, MDPI, vol. 13(18), pages 1-18, September.
    18. Wang, Yachao & Wen, Yi & Zhu, Qinggong & Luo, Jiaxin & Yang, Zhengjun & Su, Sheng & Wang, Xin & Hao, Lijun & Tan, Jianwei & Yin, Hang & Ge, Yunshan, 2022. "Real driving energy consumption and CO2 & pollutant emission characteristics of a parallel plug-in hybrid electric vehicle under different propulsion modes," Energy, Elsevier, vol. 244(PB).
    19. Kaźmierski, Bartosz & Kapusta, Łukasz Jan, 2023. "The importance of individual spray properties in performance improvement of a urea-SCR system employing flash-boiling injection," Applied Energy, Elsevier, vol. 329(C).
    20. Yuan Qiao & Yizhou Song & Kaisheng Huang, 2019. "A Novel Control Algorithm Design for Hybrid Electric Vehicles Considering Energy Consumption and Emission Performance," Energies, MDPI, vol. 12(14), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14138-:d:957210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.