IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p12820-d935083.html
   My bibliography  Save this article

Building Information Modeling (BIM) Driven Carbon Emission Reduction Research: A 14-Year Bibliometric Analysis

Author

Listed:
  • Zhen Liu

    (School of Design, South China University of Technology, Guangzhou 510006, China)

  • Peixuan Li

    (School of Design, South China University of Technology, Guangzhou 510006, China)

  • Fenghong Wang

    (School of Design, South China University of Technology, Guangzhou 510006, China)

  • Mohamed Osmani

    (School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough LE11 3TU, UK)

  • Peter Demian

    (School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough LE11 3TU, UK)

Abstract

Governments across the world are taking actions to address the high carbon emissions associated with the construction industry, and to achieve the long-term goals of the Paris Agreement towards carbon neutrality. Although the ideal of the carbon-emission reduction in building projects is well acknowledged and generally accepted, it is proving more difficult to implement. The application of building information modeling (BIM) brings about new possibilities for reductions in carbon emissions within the context of sustainable buildings. At present, the studies on BIM associated with carbon emissions have concentrated on the design stage, with the topics focusing on resource efficiency (namely, building energy and carbon-emission calculators). However, the effect of BIM in reducing carbon emissions across the lifecycle phases of buildings is not well researched. Therefore, this paper aims to examine the relationship between BIM, carbon emissions, and sustainable buildings by reviewing and assessing the current state of the research hotspots, trends, and gaps in the field of BIM and carbon emissions, providing a reference for understanding the current body of knowledge, and helping to stimulate future research. This paper adopts the macroquantitative and microqualitative research methods of bibliometric analysis. The results show that, in green-building construction, building lifecycle assessments, sustainable materials, the building energy efficiency and design, and environmental-protection strategies are the five most popular research directions of BIM in the field of carbon emissions in sustainable buildings. Interestingly, China has shown a good practice of using BIM for carbon-emission reduction. Furthermore, the findings suggest that the current research in the field is focused on the design and construction stages, which indicates that the operational and demolition stages have greater potential for future research. The results also indicate the need for policy and technological drivers for the rapid development of BIM-driven carbon-emission reduction.

Suggested Citation

  • Zhen Liu & Peixuan Li & Fenghong Wang & Mohamed Osmani & Peter Demian, 2022. "Building Information Modeling (BIM) Driven Carbon Emission Reduction Research: A 14-Year Bibliometric Analysis," IJERPH, MDPI, vol. 19(19), pages 1-26, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12820-:d:935083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/12820/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/12820/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gaoweijia Wang & Shanshan Li & Li Yang, 2022. "Research on the Pathway of Green Financial System to Implement the Realization of China’s Carbon Neutrality Target," IJERPH, MDPI, vol. 19(4), pages 1-18, February.
    2. Nan Wang & Daniel Satola & Aoife Houlihan Wiberg & Conghong Liu & Arild Gustavsen, 2020. "Reduction Strategies for Greenhouse Gas Emissions from High-Speed Railway Station Buildings in a Cold Climate Zone of China," Sustainability, MDPI, vol. 12(5), pages 1-22, February.
    3. Kun Lu & Xiaoyan Jiang & Vivian W. Y. Tam & Mengyun Li & Hongyu Wang & Bo Xia & Qing Chen, 2019. "Development of a Carbon Emissions Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction of Hospital Projects," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiong Chen & Hongyu Zhang & Yui-Yip Lau & Tianni Wang & Wen Wang & Guangsheng Zhang, 2023. "Climate Change, Carbon Peaks, and Carbon Neutralization: A Bibliometric Study from 2006 to 2023," Sustainability, MDPI, vol. 15(7), pages 1-12, March.
    2. Hui Liu & Yaru Chen & Youwen Hu & Zhenyu Wang & Chunlu Liu, 2023. "Current Status and Future Directions of Building Information Modeling for Low-Carbon Buildings," Energies, MDPI, vol. 17(1), pages 1-23, December.
    3. Cecília Szigeti & Zoltán Major & Dániel Róbert Szabó & Áron Szennay, 2023. "The Ecological Footprint of Construction Materials—A Standardized Approach from Hungary," Resources, MDPI, vol. 12(1), pages 1-15, January.
    4. Jie Gao & Wu Zhang & Chunbaixue Yang & Qun Wang & Rui Yuan & Rui Wang & Limiao Zhang & Zhijian Li & Xiaoli Luo, 2023. "A Comparative Study of China’s Carbon Neutrality Policy and International Research Keywords under the Background of Decarbonization Plans in China," Sustainability, MDPI, vol. 15(17), pages 1-23, August.
    5. Łukasz Mazur & Anatolii Olenchuk, 2023. "Life Cycle Assessment and Building Information Modeling Integrated Approach: Carbon Footprint of Masonry and Timber-Frame Constructions in Single-Family Houses," Sustainability, MDPI, vol. 15(21), pages 1-20, October.
    6. Qiang Du & Jiajie Zhou, 2022. "Evolution of Low Carbon Supply Chain Research: A Systematic Bibliometric Analysis," IJERPH, MDPI, vol. 19(23), pages 1-20, November.
    7. Jussi S. Jauhiainen & Claudia Krohn & Johanna Junnila, 2022. "Metaverse and Sustainability: Systematic Review of Scientific Publications until 2022 and Beyond," Sustainability, MDPI, vol. 15(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Jrade & Farnaz Jalaei & Jieying Jane Zhang & Saeed Jalilzadeh Eirdmousa & Farzad Jalaei, 2023. "Potential Integration of Bridge Information Modeling and Life Cycle Assessment/Life Cycle Costing Tools for Infrastructure Projects within Construction 4.0: A Review," Sustainability, MDPI, vol. 15(20), pages 1-25, October.
    2. Fang, Zigeng & Yan, Jiayi & Lu, Qiuchen & Chen, Long & Yang, Pu & Tang, Junqing & Jiang, Feng & Broyd, Tim & Hong, Jingke, 2023. "A systematic literature review of carbon footprint decision-making approaches for infrastructure and building projects," Applied Energy, Elsevier, vol. 335(C).
    3. Meijing Liu & Changqi Liu & Hao Xie & Zhonghui Zhao & Chong Zhu & Yangang Lu & Changsheng Bu, 2023. "Analysis of the Impact of Photovoltaic Curtain Walls Replacing Glass Curtain Walls on the Whole Life Cycle Carbon Emission of Public Buildings Based on BIM Modeling Study," Energies, MDPI, vol. 16(20), pages 1-21, October.
    4. Marie Nehasilová & Antonín Lupíšek & Petra Lupíšková Coufalová & Tomáš Kupsa & Jakub Veselka & Barbora Vlasatá & Julie Železná & Pavla Kunová & Martin Volf, 2022. "Rapid Environmental Assessment of Buildings: Linking Environmental and Cost Estimating Databases," Sustainability, MDPI, vol. 14(17), pages 1-20, September.
    5. Wanbei Jiang & Weidong Liu, 2020. "Provincial-Level CO 2 Emissions Intensity Inequality in China: Regional Source and Explanatory Factors of Interregional and Intraregional Inequalities," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    6. Jing Deng & Yun Zhang & Xiaoyun Xing & Cheng Liu, 2022. "Can Carbon Neutrality Commitment Contribute to the Sustainable Development of China’s New Energy Companies?," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    7. Maria Psillaki & Nikolaos Apostolopoulos & Ilias Makris & Panagiotis Liargovas & Sotiris Apostolopoulos & Panos Dimitrakopoulos & George Sklias, 2023. "Hospitals’ Energy Efficiency in the Perspective of Saving Resources and Providing Quality Services through Technological Options: A Systematic Literature Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    8. Yeguan Yu, 2023. "The Impact of Financial System on Carbon Intensity: From the Perspective of Digitalization," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    9. Pei Xu & Penghao Ye & Atif Jahanger & Siwei Huang & Fan Zhao, 2023. "Can green credit policy reduce corporate carbon emission intensity: Evidence from China's listed firms," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(5), pages 2623-2638, September.
    10. Cristiano, S. & Ulgiati, S. & Gonella, F., 2021. "Systemic sustainability and resilience assessment of health systems, addressing global societal priorities: Learnings from a top nonprofit hospital in a bioclimatic building in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Shanshan Lyu & Mingzeng Yang & Qincheng Zhang, 2024. "Top Management Team Heterogeneity, Top Management Incentives, and ESG Performance: Evidence from Chinese Listed Companies," Sustainability, MDPI, vol. 16(18), pages 1-32, September.
    12. Shabir Hussain Khahro & Danish Kumar & Fida Hussain Siddiqui & Tauha Hussain Ali & Muhammad Saleem Raza & Ali Raza Khoso, 2021. "Optimizing Energy Use, Cost and Carbon Emission through Building Information Modelling and a Sustainability Approach: A Case-Study of a Hospital Building," Sustainability, MDPI, vol. 13(7), pages 1-18, March.
    13. Shangram Bahadur Shah & Jirakiattikul Sopin & Kua-Anan Techato & Bibek Kumar Mudbhari, 2023. "A Systematic Review on Nexus Between Green Finance and Climate Change: Evidence from China and India," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 599-613, July.
    14. A. H. S. Garmabaki & Adithya Thaduri & Stephen Famurewa & Uday Kumar, 2021. "Adapting Railway Maintenance to Climate Change," Sustainability, MDPI, vol. 13(24), pages 1-27, December.
    15. Víctor Yepes & José V. Martí & José García, 2020. "Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    16. Caraiman Adrian-Cosmin & Dan Sorin & Pescari Simon, 2023. "Life Cycle Cost In The Built Environment, Actualization, Inflation And The Money Value Over Time," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 2, pages 139-146, April.
    17. Francisco Javier Montiel-Santiago & Manuel Jesús Hermoso-Orzáez & Julio Terrados-Cepeda, 2020. "Sustainability and Energy Efficiency: BIM 6D. Study of the BIM Methodology Applied to Hospital Buildings. Value of Interior Lighting and Daylight in Energy Simulation," Sustainability, MDPI, vol. 12(14), pages 1-29, July.
    18. Tajda Potrč Obrecht & Martin Röck & Endrit Hoxha & Alexander Passer, 2020. "BIM and LCA Integration: A Systematic Literature Review," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    19. Tiziano Dalla Mora & Erika Bolzonello & Carmine Cavalliere & Fabio Peron, 2020. "Key Parameters Featuring BIM-LCA Integration in Buildings: A Practical Review of the Current Trends," Sustainability, MDPI, vol. 12(17), pages 1-33, September.
    20. Shanshan Li & Gaoweijia Wang & Li Yang & Jichao Geng & Junqi Zhu, 2022. "Analysis and Prediction of the Coupling and Coordinated Development of Green Finance–Environmental Protection in China," Sustainability, MDPI, vol. 14(15), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12820-:d:935083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.