IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p12093-d924004.html
   My bibliography  Save this article

Lycium barbarum Polysaccharide Regulates the Lipid Metabolism and Alters Gut Microbiota in High-Fat Diet Induced Obese Mice

Author

Listed:
  • Hui Xia

    (Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China)

  • Beijia Zhou

    (Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China)

  • Jing Sui

    (Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Wenqing Ma

    (Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China)

  • Shaokang Wang

    (Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China)

  • Ligang Yang

    (Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China)

  • Guiju Sun

    (Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China)

Abstract

Bioactive compounds provide new insights into the prevention and treatment of obesity. Lycium barbarum polysaccharide (LBP), a biological macromolecule extracted from Goji berry, has displayed potential for regulating lipid metabolism. However, the relationship between gut microbiota regulation and lipid metabolism is not entirely clear. In the present study, 50, 100, and 150 mg/kg LBP were intragastrically administered to C57BL/6J male mice fed with a high-fat diet simultaneously lasting for twelve weeks. The results showed that 150 mg/kg LBP showed significant results and all doses of LBP feeding (50, 100, 150 mg/kg) remarkably decreased both serum and liver total cholesterol (TC) and triglyceride (TG) levels. Treatment of 150 mg/kg LBP seems to be more effective in weight loss, lowering free fatty acid (FFA) levels in serum and liver tissues of mice. LBP feeding increased the gene expression of adiponectin and decreased the gene expression of peroxisome proliferator-activated receptor γ, Cluster of Differentiation 36, acetyl-coA carboxylase, and fatty acid synthase in a dose-dependent manner. In addition, the 16s rDNA Sequencing analysis showed that 150 mg/kg LBP feeding may significantly increase the richness of gut microbiota by up-regulation of the ACE and Chao1 index and altered β-diversity among groups. Treatment of 150 mg/kg LBP feeding significantly regulated the microbial distribution by decreasing the relative abundance of Firmicutes and increasing the relative abundance of Bacteroidetes at the phylum level. Furthermore, the relative abundance of Faecalibaculum, Pantoea, and uncultured_bacterium_f_Muribaculaceae at the genus level was significantly affected by LBP feeding. A significant correlation was observed between body weight, TC, TG, FFA and bile acid and phyla at the genus level. The above results indicate that LBP plays a vital role in preventing obesity by co-regulating lipid metabolism and gut microbiota, but its effects vary with the dose.

Suggested Citation

  • Hui Xia & Beijia Zhou & Jing Sui & Wenqing Ma & Shaokang Wang & Ligang Yang & Guiju Sun, 2022. "Lycium barbarum Polysaccharide Regulates the Lipid Metabolism and Alters Gut Microbiota in High-Fat Diet Induced Obese Mice," IJERPH, MDPI, vol. 19(19), pages 1-12, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12093-:d:924004
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/12093/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/12093/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter J. Turnbaugh & Ruth E. Ley & Michael A. Mahowald & Vincent Magrini & Elaine R. Mardis & Jeffrey I. Gordon, 2006. "An obesity-associated gut microbiome with increased capacity for energy harvest," Nature, Nature, vol. 444(7122), pages 1027-1031, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiran Konain & Sadia & Turfa Nadeem & Adeed Khan & Warda Iqbal & Arsalan & Amir Javed & Ruby Khan & Kainat Jamil & Kainat Jamil, 2018. "Importance of Probiotics in Gastrointestinal Tract," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 8(3), pages 128-143, March.
    2. Marjolein Heddes & Baraa Altaha & Yunhui Niu & Sandra Reitmeier & Karin Kleigrewe & Dirk Haller & Silke Kiessling, 2022. "The intestinal clock drives the microbiome to maintain gastrointestinal homeostasis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Cristiane R. S. Câmara & Carlos A. Urrea & Vicki Schlegel, 2013. "Pinto Beans ( Phaseolus vulgaris L.) as a Functional Food: Implications on Human Health," Agriculture, MDPI, vol. 3(1), pages 1-22, February.
    4. Vinod Nikhra, 2019. "The Novel Dimensions of Cardio-Metabolic Health Gut Microbiota, Dysbiosis and its Fallouts," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 11(1), pages 28-37, June.
    5. Shinji Fukuda & Yumiko Nakanishi & Eisuke Chikayama & Hiroshi Ohno & Tsuneo Hino & Jun Kikuchi, 2009. "Evaluation and Characterization of Bacterial Metabolic Dynamics with a Novel Profiling Technique, Real-Time Metabolotyping," PLOS ONE, Public Library of Science, vol. 4(3), pages 1-10, March.
    6. James Robert White & Niranjan Nagarajan & Mihai Pop, 2009. "Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples," PLOS Computational Biology, Public Library of Science, vol. 5(4), pages 1-11, April.
    7. Michael DiMarzio & Brigida Rusconi & Neela H Yennawar & Mark Eppinger & Andrew D Patterson & Edward G Dudley, 2017. "Identification of a mouse Lactobacillus johnsonii strain with deconjugase activity against the FXR antagonist T-β-MCA," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-15, September.
    8. Tamar Ringel-Kulka & Jing Cheng & Yehuda Ringel & Jarkko Salojärvi & Ian Carroll & Airi Palva & Willem M de Vos & Reetta Satokari, 2013. "Intestinal Microbiota in Healthy U.S. Young Children and Adults—A High Throughput Microarray Analysis," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-10, May.
    9. Hannah Lees & Jonathan Swann & Simon M Poucher & Jeremy K Nicholson & Elaine Holmes & Ian D Wilson & Julian R Marchesi, 2014. "Age and Microenvironment Outweigh Genetic Influence on the Zucker Rat Microbiome," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-11, September.
    10. Barbara Emmenegger & Julien Massoni & Christine M. Pestalozzi & Miriam Bortfeld-Miller & Benjamin A. Maier & Julia A. Vorholt, 2023. "Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Liat Shenhav & Ori Furman & Leah Briscoe & Mike Thompson & Justin D Silverman & Itzhak Mizrahi & Eran Halperin, 2019. "Modeling the temporal dynamics of the gut microbial community in adults and infants," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-21, June.
    12. Yunjia Lai & Chih-Wei Liu & Yifei Yang & Yun-Chung Hsiao & Hongyu Ru & Kun Lu, 2021. "High-coverage metabolomics uncovers microbiota-driven biochemical landscape of interorgan transport and gut-brain communication in mice," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    13. Ankita Das & Sandeep Das & Nandita Das & Prisha Pandey & Birson Ingti & Vladimir Panchenko & Vadim Bolshev & Andrey Kovalev & Piyush Pandey, 2023. "Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials," Agriculture, MDPI, vol. 13(9), pages 1-34, August.
    14. Amirhossein Shamsaddini & Kimia Dadkhah & Patrick M Gillevet, 2020. "BiomMiner: An advanced exploratory microbiome analysis and visualization pipeline," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-13, June.
    15. Lukas Schwingshackl & Georg Hoffmann & Carolina Schwedhelm & Tamara Kalle-Uhlmann & Benjamin Missbach & Sven Knüppel & Heiner Boeing, 2016. "Consumption of Dairy Products in Relation to Changes in Anthropometric Variables in Adult Populations: A Systematic Review and Meta-Analysis of Cohort Studies," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-15, June.
    16. Kotaro Soeda & Takayoshi Sasako & Kenichiro Enooku & Naoto Kubota & Naoki Kobayashi & Yoshiko Matsumoto Ikushima & Motoharu Awazawa & Ryotaro Bouchi & Gotaro Toda & Tomoharu Yamada & Takuma Nakatsuka , 2023. "Gut insulin action protects from hepatocarcinogenesis in diabetic mice comorbid with nonalcoholic steatohepatitis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    17. Xiuying Zhang & Dongqian Shen & Zhiwei Fang & Zhuye Jie & Xinmin Qiu & Chunfang Zhang & Yingli Chen & Linong Ji, 2013. "Human Gut Microbiota Changes Reveal the Progression of Glucose Intolerance," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-11, August.
    18. Alessandra N. Bazzano & Kaitlin S. Potts & Lydia A. Bazzano & John B. Mason, 2017. "The Life Course Implications of Ready to Use Therapeutic Food for Children in Low-Income Countries," IJERPH, MDPI, vol. 14(4), pages 1-19, April.
    19. Eryun Zhang & Lihua Jin & Yangmeng Wang & Jui Tu & Ruirong Zheng & Lili Ding & Zhipeng Fang & Mingjie Fan & Ismail Al-Abdullah & Rama Natarajan & Ke Ma & Zhengtao Wang & Arthur D. Riggs & Sarah C. Shu, 2022. "Intestinal AMPK modulation of microbiota mediates crosstalk with brown fat to control thermogenesis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Mile Volarić & Dunja Šojat & Ljiljana Trtica Majnarić & Domagoj Vučić, 2024. "The Association between Functional Dyspepsia and Metabolic Syndrome—The State of the Art," IJERPH, MDPI, vol. 21(2), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12093-:d:924004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.