IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i16p10415-d893925.html
   My bibliography  Save this article

Development of the Anthropometric Grouping Index for the Eastern Caribbean Population Using the Eastern Caribbean Health Outcomes Research Network (ECHORN) Cohort Study Data

Author

Listed:
  • Israel A. Almodóvar-Rivera

    (Department of Mathematical Sciences, University of Puerto Rico at Mayagüez, Mayagüez 00681, Puerto Rico)

  • Rosa V. Rosario-Rosado

    (Department of Biostatistics and Epidemiology, Graduate School of Public Health, University of Puerto Rico at Medical Sciences Campus, San Juan 00936, Puerto Rico)

  • Cruz M. Nazario

    (Department of Biostatistics and Epidemiology, Graduate School of Public Health, University of Puerto Rico at Medical Sciences Campus, San Juan 00936, Puerto Rico)

  • Johan Hernández-Santiago

    (Department of Biostatistics and Epidemiology, Graduate School of Public Health, University of Puerto Rico at Medical Sciences Campus, San Juan 00936, Puerto Rico)

  • Farah A. Ramírez-Marrero

    (Department of Exercise Physiology, University of Puerto Rico at Río Piedras, San Juan 00925, Puerto Rico)

  • Maxime Nunez

    (School of Nursing, University of the Virgin Islands, St. Thomas, VI 00802, USA)

  • Rohan Maharaj

    (Department of Paraclinical Sciences, University of the West Indies, Saint Augustine, Trinidad and Tobago)

  • Peter Adams

    (Department of Family Medicine, Faculty of Medical Sciences, University of the West Indies, Cave Hill BB11000, Barbados)

  • Josefa L. Martinez-Brockman

    (Equity Research and Innovation Center, Yale School of Medicine, New Haven, CT 06510, USA)

  • Baylah Tessier-Sherman

    (Equity Research and Innovation Center, Yale School of Medicine, New Haven, CT 06510, USA)

  • Marcella Nunez-Smith

    (Equity Research and Innovation Center, Yale School of Medicine, New Haven, CT 06510, USA
    Department of Medicine, Yale School of Medicine, New Haven, CT 06510, USA)

Abstract

Improving public health initiative requires an accurate anthropometric index that is better suited to a specific community. In this study, the anthropometric grouping index is proposed as a more efficient and discriminatory alternative to the popular BMI for the Eastern Caribbean population. A completely distribution-free cluster analysis was performed to obtain the 11 categories, leading to AGI-11. Further, we studied these groups using novel non-parametric clustering summaries. Finally, two generalized linear mixed models were fitted to assess the association between elevated blood sugar, AGI-11 and BMI. Our results showed that AGI-11 tends to be more sensitive in predicting levels of elevated blood sugar compared to BMI. For instance, individuals identified as obese III according to BMI are (POR: 2.57; 95% CI: (1.68, 3.74)) more likely to have elevated blood sugar levels, while, according to AGI, individuals with similar characteristics are (POR: 3.73; 95% CI: (2.02, 6.86)) more likely to have elevated blood sugar levels. In conclusion, the findings of the current study suggest that AGI-11 could be used as a predictor of high blood sugar levels in this population group. Overall, higher values of anthropometric measures correlated with a higher likelihood of high blood sugar levels after adjusting by sex, age, and family history of diabetes.

Suggested Citation

  • Israel A. Almodóvar-Rivera & Rosa V. Rosario-Rosado & Cruz M. Nazario & Johan Hernández-Santiago & Farah A. Ramírez-Marrero & Maxime Nunez & Rohan Maharaj & Peter Adams & Josefa L. Martinez-Brockman &, 2022. "Development of the Anthropometric Grouping Index for the Eastern Caribbean Population Using the Eastern Caribbean Health Outcomes Research Network (ECHORN) Cohort Study Data," IJERPH, MDPI, vol. 19(16), pages 1-9, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10415-:d:893925
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/16/10415/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/16/10415/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sugar, Catherine A. & James, Gareth M., 2003. "Finding the Number of Clusters in a Dataset: An Information-Theoretic Approach," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 750-763, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    2. Yujia Li & Xiangrui Zeng & Chien‐Wei Lin & George C. Tseng, 2022. "Simultaneous estimation of cluster number and feature sparsity in high‐dimensional cluster analysis," Biometrics, The International Biometric Society, vol. 78(2), pages 574-585, June.
    3. Qiang Ji & Dayong Zhang & Yuqian Zhao, 2022. "Intra-day co-movements of crude oil futures: China and the international benchmarks," Annals of Operations Research, Springer, vol. 313(1), pages 77-103, June.
    4. Marianna Mauro & Monica Giancotti & Giovanna Talarico, 2017. "Mapping the field: A bibliometric analysis of accountability literature in healthcare," MECOSAN, FrancoAngeli Editore, vol. 2017(101), pages 7-30.
    5. Kondo, Yumi & Salibian-Barrera, Matias & Zamar, Ruben, 2016. "RSKC: An R Package for a Robust and Sparse K-Means Clustering Algorithm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i05).
    6. Jaković Božidar & Ćurlin Tamara & Miloloža Ivan, 2021. "Enterprise Digital Divide: Website e-Commerce Functionalities among European Union Enterprises," Business Systems Research, Sciendo, vol. 12(1), pages 197-215, May.
    7. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    8. Oliver Schaer & Nikolaos Kourentzes & Robert Fildes, 2022. "Predictive competitive intelligence with prerelease online search traffic," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3823-3839, October.
    9. Fang, Yixin & Wang, Junhui, 2011. "Penalized cluster analysis with applications to family data," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2128-2136, June.
    10. Irad Ben-Gal & Marcelo Bacher & Morris Amara & Erez Shmueli, 2023. "A Nonparametric Subspace Analysis Approach with Application to Anomaly Detection Ensembles," INFORMS Joural on Data Science, INFORMS, vol. 2(2), pages 99-115, October.
    11. J. Vera & Rodrigo Macías & Willem Heiser, 2013. "Cluster Differences Unfolding for Two-Way Two-Mode Preference Rating Data," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 370-396, October.
    12. Jonas M. B. Haslbeck & Dirk U. Wulff, 2020. "Estimating the number of clusters via a corrected clustering instability," Computational Statistics, Springer, vol. 35(4), pages 1879-1894, December.
    13. Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.
    14. Athanasios Constantopoulos & John Yfantopoulos & Panos Xenos & Athanassios Vozikis, 2019. "Cluster shifts based on healthcare factors: The case of Greece in an OECD background 2009-2014," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 9(6), pages 1-4.
    15. Peter Radchenko & Gourab Mukherjee, 2017. "Convex clustering via l 1 fusion penalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1527-1546, November.
    16. Li, Xuemei & Liu, Xiaoxing, 2023. "Functional classification and dynamic prediction of cumulative intraday returns in crude oil futures," Energy, Elsevier, vol. 284(C).
    17. Véronique Cariou & Stéphane Verdun & Emmanuelle Diaz & El Qannari & Evelyne Vigneau, 2009. "Comparison of three hypothesis testing approaches for the selection of the appropriate number of clusters of variables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(3), pages 227-241, December.
    18. Hand, David J. & Krzanowski, Wojtek J., 2005. "Optimising k-means clustering results with standard software packages," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 969-973, June.
    19. Jesús Miguel Jornet-Meliá & Carlos Sancho-Álvarez & Margarita Bakieva-Karimova, 2022. "Analysis of Profiles of Family Educational Situations during COVID-19 Lockdown in the Valencian Community (Spain)," Societies, MDPI, vol. 13(1), pages 1-20, December.
    20. Grace E Fox & Meng Li & Fang Zhao & Joe Z Tsien, 2017. "Distinct retrosplenial cortex cell populations and their spike dynamics during ketamine-induced unconscious state," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10415-:d:893925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.