IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0187198.html
   My bibliography  Save this article

Distinct retrosplenial cortex cell populations and their spike dynamics during ketamine-induced unconscious state

Author

Listed:
  • Grace E Fox
  • Meng Li
  • Fang Zhao
  • Joe Z Tsien

Abstract

Ketamine is known to induce psychotic-like symptoms, including delirium and visual hallucinations. It also causes neuronal damage and cell death in the retrosplenial cortex (RSC), an area that is thought to be a part of high visual cortical pathways and at least partially responsible for ketamine’s psychotomimetic activities. However, the basic physiological properties of RSC cells as well as their response to ketamine in vivo remained largely unexplored. Here, we combine a computational method, the Inter-Spike Interval Classification Analysis (ISICA), and in vivo recordings to uncover and profile excitatory cell subtypes within layers 2&3 and 5&6 of the RSC in mice within both conscious, sleep, and ketamine-induced unconscious states. We demonstrate two distinct excitatory principal cell sub-populations, namely, high-bursting excitatory principal cells and low-bursting excitatory principal cells, within layers 2&3, and show that this classification is robust over the conscious states, namely quiet awake, and natural unconscious sleep periods. Similarly, we provide evidence of high-bursting and low-bursting excitatory principal cell sub-populations within layers 5&6 that remained distinct during quiet awake and sleep states. We further examined how these subtypes are dynamically altered by ketamine. During ketamine-induced unconscious state, these distinct excitatory principal cell subtypes in both layer 2&3 and layer 5&6 exhibited distinct dynamics. We also uncovered different dynamics of local field potential under various brain states in layer 2&3 and layer 5&6. Interestingly, ketamine administration induced high gamma oscillations in layer 2&3 of the RSC, but not layer 5&6. Our results show that excitatory principal cells within RSC layers 2&3 and 5&6 contain multiple physiologically distinct sub-populations, and they are differentially affected by ketamine.

Suggested Citation

  • Grace E Fox & Meng Li & Fang Zhao & Joe Z Tsien, 2017. "Distinct retrosplenial cortex cell populations and their spike dynamics during ketamine-induced unconscious state," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-23, October.
  • Handle: RePEc:plo:pone00:0187198
    DOI: 10.1371/journal.pone.0187198
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0187198
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0187198&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0187198?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sugar, Catherine A. & James, Gareth M., 2003. "Finding the Number of Clusters in a Dataset: An Information-Theoretic Approach," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 750-763, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    2. Yujia Li & Xiangrui Zeng & Chien‐Wei Lin & George C. Tseng, 2022. "Simultaneous estimation of cluster number and feature sparsity in high‐dimensional cluster analysis," Biometrics, The International Biometric Society, vol. 78(2), pages 574-585, June.
    3. Qiang Ji & Dayong Zhang & Yuqian Zhao, 2022. "Intra-day co-movements of crude oil futures: China and the international benchmarks," Annals of Operations Research, Springer, vol. 313(1), pages 77-103, June.
    4. Marianna Mauro & Monica Giancotti & Giovanna Talarico, 2017. "Mapping the field: A bibliometric analysis of accountability literature in healthcare," MECOSAN, FrancoAngeli Editore, vol. 2017(101), pages 7-30.
    5. Kondo, Yumi & Salibian-Barrera, Matias & Zamar, Ruben, 2016. "RSKC: An R Package for a Robust and Sparse K-Means Clustering Algorithm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i05).
    6. Jaković Božidar & Ćurlin Tamara & Miloloža Ivan, 2021. "Enterprise Digital Divide: Website e-Commerce Functionalities among European Union Enterprises," Business Systems Research, Sciendo, vol. 12(1), pages 197-215, May.
    7. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    8. Oliver Schaer & Nikolaos Kourentzes & Robert Fildes, 2022. "Predictive competitive intelligence with prerelease online search traffic," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3823-3839, October.
    9. Fang, Yixin & Wang, Junhui, 2011. "Penalized cluster analysis with applications to family data," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2128-2136, June.
    10. Irad Ben-Gal & Marcelo Bacher & Morris Amara & Erez Shmueli, 2023. "A Nonparametric Subspace Analysis Approach with Application to Anomaly Detection Ensembles," INFORMS Joural on Data Science, INFORMS, vol. 2(2), pages 99-115, October.
    11. J. Vera & Rodrigo Macías & Willem Heiser, 2013. "Cluster Differences Unfolding for Two-Way Two-Mode Preference Rating Data," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 370-396, October.
    12. Jonas M. B. Haslbeck & Dirk U. Wulff, 2020. "Estimating the number of clusters via a corrected clustering instability," Computational Statistics, Springer, vol. 35(4), pages 1879-1894, December.
    13. Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.
    14. Athanasios Constantopoulos & John Yfantopoulos & Panos Xenos & Athanassios Vozikis, 2019. "Cluster shifts based on healthcare factors: The case of Greece in an OECD background 2009-2014," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 9(6), pages 1-4.
    15. Peter Radchenko & Gourab Mukherjee, 2017. "Convex clustering via l 1 fusion penalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1527-1546, November.
    16. Li, Xuemei & Liu, Xiaoxing, 2023. "Functional classification and dynamic prediction of cumulative intraday returns in crude oil futures," Energy, Elsevier, vol. 284(C).
    17. Véronique Cariou & Stéphane Verdun & Emmanuelle Diaz & El Qannari & Evelyne Vigneau, 2009. "Comparison of three hypothesis testing approaches for the selection of the appropriate number of clusters of variables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(3), pages 227-241, December.
    18. Hand, David J. & Krzanowski, Wojtek J., 2005. "Optimising k-means clustering results with standard software packages," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 969-973, June.
    19. Jesús Miguel Jornet-Meliá & Carlos Sancho-Álvarez & Margarita Bakieva-Karimova, 2022. "Analysis of Profiles of Family Educational Situations during COVID-19 Lockdown in the Valencian Community (Spain)," Societies, MDPI, vol. 13(1), pages 1-20, December.
    20. Andrey V. Orekhov, 2021. "Quasi-Deterministic Processes with Monotonic Trajectories and Unsupervised Machine Learning," Mathematics, MDPI, vol. 9(18), pages 1-26, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0187198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.