*K-means and Cluster Models for Cancer Signatures
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zura Kakushadze & Willie Yu, 2016. "Statistical Industry Classification," Journal of Risk & Control, Risk Market Journals, vol. 3(1), pages 17-65.
- Vincent Caval & Rodolphe Suspène & Milana Shapira & Jean-Pierre Vartanian & Simon Wain-Hobson, 2014. "A prevalent cancer susceptibility APOBEC3A hybrid allele bearing APOBEC3B 3′UTR enhances chromosomal DNA damage," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Zura Kakushadze & Willie Yu, 2017. "How to combine a billion alphas," Journal of Asset Management, Palgrave Macmillan, vol. 18(1), pages 64-80, January.
- Connor, Gregory & Korajczyk, Robert A, 1993. "A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-1291, September.
- Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
- Gunes Gundem & Peter Van Loo & Barbara Kremeyer & Ludmil B. Alexandrov & Jose M. C. Tubio & Elli Papaemmanuil & Daniel S. Brewer & Heini M. L. Kallio & Gunilla Högnäs & Matti Annala & Kati Kivinummi &, 2015. "The evolutionary history of lethal metastatic prostate cancer," Nature, Nature, vol. 520(7547), pages 353-357, April.
- Sugar, Catherine A. & James, Gareth M., 2003. "Finding the Number of Clusters in a Dataset: An Information-Theoretic Approach," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 750-763, January.
- Kakushadze, Zura & Yu, Willie, 2016. "Factor models for cancer signatures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 527-559.
- Zura Kakushadze & Willie Yu, 2016. "Multifactor Risk Models and Heterotic CAPM," Papers 1602.04902, arXiv.org, revised Mar 2016.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zura Kakushadze & Willie Yu, 2020. "Machine Learning Treasury Yields," Bulletin of Applied Economics, Risk Market Journals, vol. 7(1), pages 1-65.
- Zura Kakushadze & Willie Yu, 2020. "Machine Learning Treasury Yields," Papers 2003.05095, arXiv.org.
- Mantas Lukauskas & Tomas Ruzgas, 2023. "Reduced Clustering Method Based on the Inversion Formula Density Estimation," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zura Kakushadze & Willie Yu, 2016. "Statistical Industry Classification," Papers 1607.04883, arXiv.org, revised Dec 2018.
- Zura Kakushadze & Willie Yu, 2017. "Mutation Clusters from Cancer Exome," Papers 1707.08504, arXiv.org.
- Zura Kakushadze & Willie Yu, 2016. "Factor Models for Cancer Signatures," Papers 1604.08743, arXiv.org, revised Jan 2017.
- Zura Kakushadze & Willie Yu, 2018. "Betas, Benchmarks and Beating the Market," Papers 1807.09919, arXiv.org.
- Zura Kakushadze & Willie Yu, 2020. "Machine Learning Treasury Yields," Bulletin of Applied Economics, Risk Market Journals, vol. 7(1), pages 1-65.
- Zura Kakushadze, 2020. "Quant Bust 2020," Papers 2006.05632, arXiv.org.
- Kakushadze, Zura & Yu, Willie, 2016. "Factor models for cancer signatures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 527-559.
- Zura Kakushadze & Willie Yu, 2020. "Machine Learning Treasury Yields," Papers 2003.05095, arXiv.org.
- José M. Maisog & Andrew T. DeMarco & Karthik Devarajan & Stanley Young & Paul Fogel & George Luta, 2021. "Assessing Methods for Evaluating the Number of Components in Non-Negative Matrix Factorization," Mathematics, MDPI, vol. 9(22), pages 1-13, November.
- GUO-FITOUSSI, Liang, 2013. "A Comparison of the Finite Sample Properties of Selection Rules of Factor Numbers in Large Datasets," MPRA Paper 50005, University Library of Munich, Germany.
- Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.
- Li, Hongjun & Li, Qi & Shi, Yutang, 2017. "Determining the number of factors when the number of factors can increase with sample size," Journal of Econometrics, Elsevier, vol. 197(1), pages 76-86.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022.
"Eigenvalue tests for the number of latent factors in short panels,"
Swiss Finance Institute Research Paper Series
22-81, Swiss Finance Institute.
- Alain-Philippe Fortin & Patrick Gagliardini & Olivier Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Papers 2210.16042, arXiv.org.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012.
"A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models,"
The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
- Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "A quasi maximum likelihood approach for large approximate dynamic factor models," Working Paper Series 674, European Central Bank.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," Post-Print hal-00638440, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00638440, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) hal-00638440, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2008. "A Quasi Maximum Likelihood Approach for Large Approximate Dynamic Factor Models," Working Papers ECARES 2008_034, ULB -- Universite Libre de Bruxelles.
- Reichlin, Lucrezia & Doz, Catherine & Giannone, Domenico, 2006. "A Quasi Maximum Likelihood Approach for Large Approximate Dynamic Factor Models," CEPR Discussion Papers 5724, C.E.P.R. Discussion Papers.
- Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015.
"Risks of large portfolios,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
- Jianqing Fan & Yuan Liao & Xiaofeng Shi, 2013. "Risks of Large Portfolios," Papers 1302.0926, arXiv.org.
- Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2013. "Risks of large portfolios," MPRA Paper 44206, University Library of Munich, Germany.
- Norman R. Swanson & Nii Ayi Armah, 2011. "Diffusion Index Models and Index Proxies: Recent Results and New Directions," Departmental Working Papers 201114, Rutgers University, Department of Economics.
- Daniel Grenouilleau, 2004. "A sorted leading indicators dynamic (SLID) factor model for short-run euro-area GDP forecasting," European Economy - Economic Papers 2008 - 2015 219, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
- Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
- Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2017-03-19 (Computational Economics)
- NEP-HEA-2017-03-19 (Health Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1703.00703. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.