IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i16p10242-d891106.html
   My bibliography  Save this article

Agent Simulation Model of COVID-19 Epidemic Agent-Based on GIS: A Case Study of Huangpu District, Shanghai

Author

Listed:
  • Tao Dong

    (School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China
    GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming 650500, China)

  • Wen Dong

    (GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming 650500, China
    Faculty of Geography, Yunnan Normal University, Kunming 650500, China)

  • Quanli Xu

    (GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming 650500, China
    Faculty of Geography, Yunnan Normal University, Kunming 650500, China)

Abstract

Since the COVID-19 outbreak was detected and reported at the end of 2019, the pandemic continues worldwide, with public health authorities and the general public in each country struggling to balance safety and normal travel activities. However, the complex public health environment and the complexity of human behaviors, as well as the constant mutation of the COVID-19 virus, requires the development of theoretical and simulation tools to accurately model all segments of society. In this paper, an agent-based model is proposed, the model constructs the real geographical environment of Shanghai Huangpu District based on the building statistics data of Shanghai Huangpu District, and the real population data of Shanghai Huangpu District based on the data of China’s seventh Population census in 2020. After incorporating the detailed elements of COVID-19 transmission and the real data of WHO, the model forms various impact parameters. Finally, the model was validated according to the COVID-19 data reported by the official, and the model is applied to a hypothetical scenario. Shanghai is one of the places hardest hit by the current outbreak, Huangpu District is the “heart, window and name card” of Shanghai, and its importance to Shanghai is self-evident. so we used one-to-one population modeling to simulate the spread of COVID-19 in Huangpu District of Shanghai, In addition to the conventional functions of crowd movement, detection and treatment, the model also takes into account the burden of nucleic acid detection on the model caused by diseases similar to COVID-19, such as seasonal cold. The model validation results show that we have constructed a COVID-19 epidemic agent risk assessment system suitable for the individual epidemiological characteristics of COVID-19 in China, which can adjust and reflect on the existing COVID-19 epidemic intervention strategies and individual health behaviors. To provide scientific theoretical basis and information decision-making tools for effective prevention and control of COVID-19 and public health intervention in China.

Suggested Citation

  • Tao Dong & Wen Dong & Quanli Xu, 2022. "Agent Simulation Model of COVID-19 Epidemic Agent-Based on GIS: A Case Study of Huangpu District, Shanghai," IJERPH, MDPI, vol. 19(16), pages 1-19, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10242-:d:891106
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/16/10242/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/16/10242/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    2. Neil M. Ferguson & Derek A.T. Cummings & Simon Cauchemez & Christophe Fraser & Steven Riley & Aronrag Meeyai & Sopon Iamsirithaworn & Donald S. Burke, 2005. "Strategies for containing an emerging influenza pandemic in Southeast Asia," Nature, Nature, vol. 437(7056), pages 209-214, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeremy Hadidjojo & Siew Ann Cheong, 2011. "Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-10, July.
    2. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    3. James Truscott & Neil M Ferguson, 2012. "Evaluating the Adequacy of Gravity Models as a Description of Human Mobility for Epidemic Modelling," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    4. Eva K. Lee & Chien-Hung Chen & Ferdinand Pietz & Bernard Benecke, 2009. "Modeling and Optimizing the Public-Health Infrastructure for Emergency Response," Interfaces, INFORMS, vol. 39(5), pages 476-490, October.
    5. Eva K. Lee & Ferdinand Pietz & Bernard Benecke & Jacquelyn Mason & Greg Burel, 2013. "Advancing Public Health and Medical Preparedness with Operations Research," Interfaces, INFORMS, vol. 43(1), pages 79-98, February.
    6. Akira Watanabe & Hiroyuki Matsuda, 2023. "Effectiveness of feedback control and the trade-off between death by COVID-19 and costs of countermeasures," Health Care Management Science, Springer, vol. 26(1), pages 46-61, March.
    7. Andy Hong & Sandip Chakrabarti, 2023. "Compact living or policy inaction? Effects of urban density and lockdown on the COVID-19 outbreak in the US," Urban Studies, Urban Studies Journal Limited, vol. 60(9), pages 1588-1609, July.
    8. Rakowski, Franciszek & Gruziel, Magdalena & Bieniasz-Krzywiec, Łukasz & Radomski, Jan P., 2010. "Influenza epidemic spread simulation for Poland — a large scale, individual based model study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3149-3165.
    9. van der Weijden, Charlie P. & Stein, Mart L. & Jacobi, André J. & Kretzschmar, Mirjam E.E. & Reintjes, Ralf & van Steenbergen, Jim E. & Timen, Aura, 2013. "Choosing pandemic parameters for pandemic preparedness planning: A comparison of pandemic scenarios prior to and following the influenza A(H1N1) 2009 pandemic," Health Policy, Elsevier, vol. 109(1), pages 52-62.
    10. Lawrence M. Wein & Michael P. Atkinson, 2009. "Assessing Infection Control Measures for Pandemic Influenza," Risk Analysis, John Wiley & Sons, vol. 29(7), pages 949-962, July.
    11. Savachkin, Alex & Uribe, Andrés, 2012. "Dynamic redistribution of mitigation resources during influenza pandemics," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 33-45.
    12. T Déirdre Hollingsworth & Don Klinkenberg & Hans Heesterbeek & Roy M Anderson, 2011. "Mitigation Strategies for Pandemic Influenza A: Balancing Conflicting Policy Objectives," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-11, February.
    13. Dionne M. Aleman & Theodorus G. Wibisono & Brian Schwartz, 2011. "A Nonhomogeneous Agent-Based Simulation Approach to Modeling the Spread of Disease in a Pandemic Outbreak," Interfaces, INFORMS, vol. 41(3), pages 301-315, June.
    14. Warren Jochem & Kelly Sims & Edward Bright & Marie Urban & Amy Rose & Phillip Coleman & Budhendra Bhaduri, 2013. "Estimating traveler populations at airport and cruise terminals for population distribution and dynamics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1325-1342, September.
    15. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    16. Cuñat, Alejandro & Zymek, Robert, 2022. "The (structural) gravity of epidemics," European Economic Review, Elsevier, vol. 144(C).
    17. Ayaz Hyder & David L Buckeridge & Brian Leung, 2013. "Predictive Validation of an Influenza Spread Model," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-20, June.
    18. Ali Ekici & Pınar Keskinocak & Julie L. Swann, 2014. "Modeling Influenza Pandemic and Planning Food Distribution," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 11-27, February.
    19. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "The benefits of combining early aspecific vaccination with later specific vaccination," European Journal of Operational Research, Elsevier, vol. 271(2), pages 606-619.
    20. Kenta Yashima & Akira Sasaki, 2014. "Epidemic Process over the Commute Network in a Metropolitan Area," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10242-:d:891106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.