IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i11p6915-d832029.html
   My bibliography  Save this article

Effect of Precipitation Variation on Soil Respiration in Rain-Fed Winter Wheat Systems on the Loess Plateau, China

Author

Listed:
  • Houkun Chu

    (State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, Lanzhou 730020, China
    College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
    National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, Qingyang 745004, China)

  • Hong Ni

    (State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, Lanzhou 730020, China
    College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
    National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, Qingyang 745004, China)

  • Jingyong Ma

    (State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, Lanzhou 730020, China
    College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
    National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, Qingyang 745004, China)

  • Yuying Shen

    (State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, Lanzhou 730020, China
    College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
    National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, Qingyang 745004, China)

Abstract

Global climate change has aggravated the hydrological cycle by changing both the amount and distribution of precipitation, and this is especially notable in the semiarid Loess Plateau. How these precipitation variations have affected soil carbon (C) emission by the agroecosystems is still unclear. Here, to evaluate the effects of precipitation variation on soil respiration (R s ), a field experiment (from 2019 to 2020) was conducted with 3 levels of manipulation, including ambient precipitation (CK), 30% decreased precipitation (P −30 ), and 30% increased precipitation (P +30 ) in rain-fed winter wheat ( Triticum aestivum L.) agroecosystems on the Loess Plateau, China. The results showed that the average R s in P −30 treatment was significantly higher than those in the CK and P +30 treatments ( p < 0.05), and the cumulative CO 2 emissions were 406.37, 372.58 and 383.59 g C m −2 , respectively. Seasonal responses of R s to the soil volumetric moisture content (VWC) were affected by the different precipitation treatments. R s was quadratically correlated with the VWC in the CK and P +30 treatments, and the threshold of the optimal VWC for R s was approximately 16.06–17.07%. However, R s was a piecewise linear function of the VWC in the P −30 treatment. The synergism of soil temperature (T s ) and VWC can better explain the variation in soil respiration in the CK and P −30 treatments. However, an increase in precipitation led to the decoupling of the R s responses to T s . The temperature sensitivity of respiration (Q 10 ) varied with precipitation variation. Q 10 was positive correlated with seasonal T s in the CK and P +30 treatments, but exhibited a negative polynomial correlation with seasonal T s in the P −30 treatment. R s also exhibited diurnal clockwise hysteresis loops with T s in the three precipitation treatments, and the seasonal dynamics of the diurnal lag time were significantly negatively correlated with the VWC. Our study highlighted that understanding the synergistic and decoupled responses of R s and Q 10 to T s and VWC and the threshold of the change in response to the VWC under precipitation variation scenarios can benefit the prediction of future C balances in agroecosystems in semiarid regions under climate change.

Suggested Citation

  • Houkun Chu & Hong Ni & Jingyong Ma & Yuying Shen, 2022. "Effect of Precipitation Variation on Soil Respiration in Rain-Fed Winter Wheat Systems on the Loess Plateau, China," IJERPH, MDPI, vol. 19(11), pages 1-18, June.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:11:p:6915-:d:832029
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/11/6915/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/11/6915/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Yueyue & Ma, Xiangcheng & Wang, Yingxin & Ali, Shahzad & Cai, Tie & Jia, Zhikuan, 2020. "Effects of ridge-furrow mulching system with supplementary irrigation on soil respiration in winter wheat fields under different rainfall conditions," Agricultural Water Management, Elsevier, vol. 239(C).
    2. Yiqi Luo & Shiqiang Wan & Dafeng Hui & Linda L. Wallace, 2001. "Acclimatization of soil respiration to warming in a tall grass prairie," Nature, Nature, vol. 413(6856), pages 622-625, October.
    3. Chonggang Xu & Nate G. McDowell & Rosie A. Fisher & Liang Wei & Sanna Sevanto & Bradley O. Christoffersen & Ensheng Weng & Richard S. Middleton, 2019. "Increasing impacts of extreme droughts on vegetation productivity under climate change," Nature Climate Change, Nature, vol. 9(12), pages 948-953, December.
    4. Jian Liu & Bin Wang & Mark A. Cane & So-Young Yim & June-Yi Lee, 2013. "Divergent global precipitation changes induced by natural versus anthropogenic forcing," Nature, Nature, vol. 493(7434), pages 656-659, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Yao & Li, Guang & Lu, Yanhua & Liu, Shuainan, 2023. "Modelling the impact of climate change and tillage practices on soil CO2 emissions from dry farmland in the Loess Plateau of China," Ecological Modelling, Elsevier, vol. 478(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdeta Jembere Ebsa, 2019. "The Fate of Soil Resource in Response to Global Warming," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 16(4), pages 78-82, January.
    2. Cai, Qingyin & Çakır, Metin & Beatty, Timothy & Park, Timothy A., 2022. "Drought and the Specialty Crops Production in California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322530, Agricultural and Applied Economics Association.
    3. V. Savo & K. E. Kohfeld & J. Sillmann & C. Morton & J. Bailey & A. S. Haslerud & C. Le Quéré & D. Lepofsky, 2024. "Using human observations with instrument-based metrics to understand changing rainfall patterns," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Liao, Zhenqi & Zeng, Hualiang & Fan, Junliang & Lai, Zhenlin & Zhang, Chen & Zhang, Fucang & Wang, Haidong & Cheng, Minghui & Guo, Jinjin & Li, Zhijun & Wu, Peng, 2022. "Effects of plant density, nitrogen rate and supplemental irrigation on photosynthesis, root growth, seed yield and water-nitrogen use efficiency of soybean under ridge-furrow plastic mulching," Agricultural Water Management, Elsevier, vol. 268(C).
    5. Yuanyuan Wang & Zhenghua Hu & A. R. M. Towfiqul Islam & Shutao Chen & Dongyao Shang & Ying Xue, 2019. "Effect of Warming and Elevated O 3 Concentration on CO 2 Emissions in a Wheat-Soybean Rotation Cropland," IJERPH, MDPI, vol. 16(10), pages 1-19, May.
    6. Xiongwen Chen & Wilfred Post & Richard Norby & Aimée Classen, 2011. "Modeling soil respiration and variations in source components using a multi-factor global climate change experiment," Climatic Change, Springer, vol. 107(3), pages 459-480, August.
    7. Ralph Trancoso & Jozef Syktus & Richard P. Allan & Jacky Croke & Ove Hoegh-Guldberg & Robin Chadwick, 2024. "Significantly wetter or drier future conditions for one to two thirds of the world’s population," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Adama A. Gross & Uriah G. Bailey & Inioluwa Ogunseye, 2024. "Corruption, Prebendalism and the Fragile State: A Case Study on Liberia," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(2), pages 1445-1457, February.
    9. Yuyang Yu & Jing Li & Zixiang Zhou & Li Zeng & Cheng Zhang, 2019. "Estimation of the Value of Ecosystem Carbon Sequestration Services under Different Scenarios in the Central China (the Qinling-Daba Mountain Area)," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
    10. Xiaoqing Shi & Tianling Qin & Hanjiang Nie & Baisha Weng & Shan He, 2019. "Changes in Major Global River Discharges Directed into the Ocean," IJERPH, MDPI, vol. 16(8), pages 1-19, April.
    11. Decheng Zhou & Lu Hao & John B. Kim & Peilong Liu & Cen Pan & Yongqiang Liu & Ge Sun, 2019. "Potential impacts of climate change on vegetation dynamics and ecosystem function in a mountain watershed on the Qinghai-Tibet Plateau," Climatic Change, Springer, vol. 156(1), pages 31-50, September.
    12. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Chunbo Chen & Chi Zhang, 2017. "Projecting the CO 2 and Climatic Change Effects on the Net Primary Productivity of the Urban Ecosystems in Phoenix, AZ in the 21st Century under Multiple RCP (Representative Concentration Pathway) Sce," Sustainability, MDPI, vol. 9(8), pages 1-20, August.
    14. Yueyue Xu & Yingxin Wang & Xiangcheng Ma & Tie Cai & Zhikuan Jia, 2022. "Effect of a Ridge-Furrow Mulching System and Limited Supplementary Irrigation on N 2 O Emission Characteristics and Grain Yield of Winter Wheat ( Triticum aestivum L.) Fields under Dryland Conditions," Agriculture, MDPI, vol. 12(5), pages 1-16, April.
    15. Yanxi Zhao & Dengpan Xiao & Huizi Bai & Jianzhao Tang & De Li Liu & Yongqing Qi & Yanjun Shen, 2022. "The Prediction of Wheat Yield in the North China Plain by Coupling Crop Model with Machine Learning Algorithms," Agriculture, MDPI, vol. 13(1), pages 1-19, December.
    16. Chen, Yizhao & Fei, Xinran & Groisman, Pavel & Sun, Zhengguo & Zhang, Jianan & Qin, Zhihao, 2019. "Contrasting policy shifts influence the pattern of vegetation production and C sequestration over pasture systems: A regional-scale comparison in Temperate Eurasian Steppe," Agricultural Systems, Elsevier, vol. 176(C).
    17. David L. Miller & Sebastian Wolf & Joshua B. Fisher & Benjamin F. Zaitchik & Jingfeng Xiao & Trevor F. Keenan, 2023. "Increased photosynthesis during spring drought in energy-limited ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Sai Zhang & Hafiz Athar Hussain & Longchang Wang & Saddam Hussain & Biao Li & Hangfei Zhou & Haixiu Luo & Xiaoyu Zhang & Zhonglian Ma & Ling Long & Yisha Dai, 2019. "Responses of Soil Respiration and Organic Carbon to Straw Mulching and Ridge Tillage in Maize Field of a Triple Cropping System in the Hilly Region of Southwest China," Sustainability, MDPI, vol. 11(11), pages 1-15, May.
    19. Yaoping Wang & Jiafu Mao & Forrest M. Hoffman & Céline J. W. Bonfils & Hervé Douville & Mingzhou Jin & Peter E. Thornton & Daniel M. Ricciuto & Xiaoying Shi & Haishan Chen & Stan D. Wullschleger & Shi, 2022. "Quantification of human contribution to soil moisture-based terrestrial aridity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Xiangtao Wang & Zhigang Hu & Ziwei Zhang & Jiwang Tang & Ben Niu, 2024. "Altitude-Shifted Climate Variables Dominate the Drought Effects on Alpine Grasslands over the Qinghai–Tibetan Plateau," Sustainability, MDPI, vol. 16(15), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:11:p:6915-:d:832029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.