IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v176y2019ics0308521x18312605.html
   My bibliography  Save this article

Contrasting policy shifts influence the pattern of vegetation production and C sequestration over pasture systems: A regional-scale comparison in Temperate Eurasian Steppe

Author

Listed:
  • Chen, Yizhao
  • Fei, Xinran
  • Groisman, Pavel
  • Sun, Zhengguo
  • Zhang, Jianan
  • Qin, Zhihao

Abstract

Socio-economical conditions profoundly influence terrestrial ecosystems, especially the agroecosystems. However, the effects of large-scale “top-down” socio-economical changes on patterns of vegetation production and C sequestration in pastures remain largely unclear. The contrasting institutional and policy shifts in 1990s over the two sub-region of Temperate Eurasian Steppe (TES), i.e., the Kazakh Steppe (KS) and the Mongol Steppe (MS), provide a unique opportunity to illustrate the human and natural interactions. Combining multiple information from remote sensing, land model, climate and inventory data, this study investigated how the regional trend and inter-annual variability (IAV) of leaf area index (LAI), net primary productivity (NPP), net ecosystem productivity (NEP) were associated with different institutional and policy shifts. From 1997 to 2016, climate is the primary control factor to the IAV of the ecosystem indexes (EIs, i.e., LAI, NPP, NEP) at a regional view. Highly contrasting impacts of human appropriation indexes (HAIs, i.e., livestock number and agricultural GDP) to the EIs were found for the two sub-region. The effect of HAIs on EIs was weak in the MS, but significant negative correlations between HAIs and EIs were found in the KS. Further decomposition into administrative divisions showed that the swift rise of human appropriation in China was accompanied with increases in grassland NPP and NEP, owing to the policy shift to sustainable management. But the institutional shift to market-driven economy and increasing human appropriation generally acted as a negative factor to EIs in various countries over the KS, especially in Uzbekistan and Turkmenistan. Regional evidences revealed the importance of large-scale socio-economic shifts in shaping the pattern of important ecosystem properties of grasslands and emphasized the importance of sustainability development in managing pasture systems.

Suggested Citation

  • Chen, Yizhao & Fei, Xinran & Groisman, Pavel & Sun, Zhengguo & Zhang, Jianan & Qin, Zhihao, 2019. "Contrasting policy shifts influence the pattern of vegetation production and C sequestration over pasture systems: A regional-scale comparison in Temperate Eurasian Steppe," Agricultural Systems, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:agisys:v:176:y:2019:i:c:s0308521x18312605
    DOI: 10.1016/j.agsy.2019.102679
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X18312605
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2019.102679?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kraemer, Roland & Prishchepov, Alexander V & Müller, Daniel & Kuemmerle, Tobias & Radeloff, Volker C & Dara, Andrey & Terekhov, Alexey & Frühauf, Manfred, 2015. "Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin Lands area of Kazakhstan," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 10(5), pages 1-17.
    2. Yiqi Luo & Shiqiang Wan & Dafeng Hui & Linda L. Wallace, 2001. "Acclimatization of soil respiration to warming in a tall grass prairie," Nature, Nature, vol. 413(6856), pages 622-625, October.
    3. Xinghua Sui & Guangsheng Zhou & Qianlai Zhuang, 2013. "Sensitivity of carbon budget to historical climate variability and atmospheric CO 2 concentration in temperate grassland ecosystems in China," Climatic Change, Springer, vol. 117(1), pages 259-272, March.
    4. Nora Dudwick & Karin Fock & David Sedik, 2007. "Land Reform and Farm Restructuring in Transition Countries : The Experience of Bulgaria, Moldova, Azerbaijan, and Kazakhstan," World Bank Publications - Books, The World Bank Group, number 6685.
    5. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    6. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    7. Patrick Meyfroidt & Florian Schierhorn & Alexander Vladimirovich Prishchepov & Daniel Muller & Tobias Kuemmerle, 2016. "Drivers, Constraints and Trade-Offs Associated with Recultivating Abandoned Cropland in Russia, Ukraine and Kazakhstan," Spatial Economics=Prostranstvennaya Ekonomika, Economic Research Institute, Far Eastern Branch, Russian Academy of Sciences (Khabarovsk, Russia), issue 2, pages 55-103.
    8. Karl-Heinz Erb & Thomas Kastner & Christoph Plutzar & Anna Liza S. Bais & Nuno Carvalhais & Tamara Fetzel & Simone Gingrich & Helmut Haberl & Christian Lauk & Maria Niedertscheider & Julia Pongratz & , 2018. "Unexpectedly large impact of forest management and grazing on global vegetation biomass," Nature, Nature, vol. 553(7686), pages 73-76, January.
    9. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    10. Baydildina, Adilya & Akshinbay, Aynur & Bayetova, Manshuk & Mkrytichyan, Lado & Haliepesova, Anadjamal & Ataev, Djandurdy, 2000. "Agricultural policy reforms and food security in Kazakhstan and Turkmenistan," Food Policy, Elsevier, vol. 25(6), pages 733-747, December.
    11. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    12. Benjamin Poulter & David Frank & Philippe Ciais & Ranga B. Myneni & Niels Andela & Jian Bi & Gregoire Broquet & Josep G. Canadell & Frederic Chevallier & Yi Y. Liu & Steven W. Running & Stephen Sitch , 2014. "Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle," Nature, Nature, vol. 509(7502), pages 600-603, May.
    13. Wang, Yuhui & Zhou, Guangsheng & Jia, Bingrui, 2008. "Modeling SOC and NPP responses of meadow steppe to different grazing intensities in Northeast China," Ecological Modelling, Elsevier, vol. 217(1), pages 72-78.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pietro De Marinis & Samuele De Petris & Filippo Sarvia & Giacinto Manfron & Evelyn Joan Momo & Tommaso Orusa & Gianmarco Corvino & Guido Sali & Enrico Mondino Borgogno, 2021. "Supporting Pro-Poor Reforms of Agricultural Systems in Eastern DRC (Africa) with Remotely Sensed Data: A Possible Contribution of Spatial Entropy to Interpret Land Management Practices," Land, MDPI, vol. 10(12), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    2. Solberg, Birger & Moiseyev, Alex & Hansen, Jon Øvrum & Horn, Svein Jarle & Øverland, Margareth, 2021. "Wood for food: Economic impacts of sustainable use of forest biomass for salmon feed production in Norway," Forest Policy and Economics, Elsevier, vol. 122(C).
    3. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    4. Speers, Ann E. & Besedin, Elena Y. & Palardy, James E. & Moore, Chris, 2016. "Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological–economic model," Ecological Economics, Elsevier, vol. 128(C), pages 33-43.
    5. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    6. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    7. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    8. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Phetheet, Jirapat & Hill, Mary C. & Barron, Robert W. & Gray, Benjamin J. & Wu, Hongyu & Amanor-Boadu, Vincent & Heger, Wade & Kisekka, Isaya & Golden, Bill & Rossi, Matthew W., 2021. "Relating agriculture, energy, and water decisions to farm incomes and climate projections using two freeware programs, FEWCalc and DSSAT," Agricultural Systems, Elsevier, vol. 193(C).
    10. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    11. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    12. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    13. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    14. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    15. Fabien Cremona & Sirje Vilbaste & Raoul-Marie Couture & Peeter Nõges & Tiina Nõges, 2017. "Is the future of large shallow lakes blue-green? Comparing the response of a catchment-lake model chain to climate predictions," Climatic Change, Springer, vol. 141(2), pages 347-361, March.
    16. Govorukha, Kristina & Mayer, Philip & Rübbelke, Dirk & Vögele, Stefan, 2020. "Economic disruptions in long-term energy scenarios – Implications for designing energy policy," Energy, Elsevier, vol. 212(C).
    17. Sferra, Fabio & Krapp, Mario & Roming, Niklas & Schaeffer, Michiel & Malik, Aman & Hare, Bill & Brecha, Robert, 2019. "Towards optimal 1.5° and 2 °C emission pathways for individual countries: A Finland case study," Energy Policy, Elsevier, vol. 133(C).
    18. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    19. Magalhães Filho, L.N.L. & Roebeling, P.C. & Costa, L.F.C. & de Lima, L.T., 2022. "Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development," Ecosystem Services, Elsevier, vol. 58(C).
    20. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:176:y:2019:i:c:s0308521x18312605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.