IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i8p4256-d537933.html
   My bibliography  Save this article

Predicting Active NBA Players Most Likely to Be Inducted into the Basketball Hall of Famers Using Artificial Neural Networks in Microsoft Excel: Development and Usability Study

Author

Listed:
  • Po-Hsin Chou

    (Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
    School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan)

  • Tsair-Wei Chien

    (Department of Medical Research, Chi-Mei Medical Center, Tainan 700, Taiwan)

  • Ting-Ya Yang

    (Medical Education Center, Chi-Mei Medical Center, Tainan 700, Taiwan
    School of Medicine, College of Medicine, China Medical University, Taichung 400, Taiwan)

  • Yu-Tsen Yeh

    (Medical School, St. George’s University of London, London SW17 0RE, UK)

  • Willy Chou

    (Department of Physical Medicine and Rehabilitation, Chi Mei Medical Center, Tainan 700, Taiwan)

  • Chao-Hung Yeh

    (Department of Neurosurgery, Chi Mei Medical Center, Tainan 700, Taiwan)

Abstract

The prediction of whether active NBA players can be inducted into the Hall of Fame (HOF) is interesting and important. However, no such research have been published in the literature, particularly using the artificial neural network (ANN) technique. The aim of this study is to build an ANN model with an app for automatic prediction and classification of HOF for NBA players. We downloaded 4728 NBA players’ data of career stats and accolades from the website at basketball-reference.com. The training sample was collected from 85 HOF members and 113 retired Non-HOF players based on completed data and a longer career length (?15 years). Featured variables were taken from the higher correlation coefficients (<0.1) with HOF and significant deviations apart from the two HOF/Non-HOF groups using logistical regression. Two models (i.e., ANN and convolutional neural network, CNN) were compared in model accuracy (e.g., sensitivity, specificity, area under the receiver operating characteristic curve, AUC). An app predicting HOF was then developed involving the model’s parameters. We observed that (1) 20 feature variables in the ANN model yielded a higher AUC of 0.93 (95% CI 0.93–0.97) based on the 198-case training sample, (2) the ANN performed better than CNN on the accuracy of AUC (= 0.91, 95% CI 0.87–0.95), and (3) an ready and available app for predicting HOF was successfully developed. The 20-variable ANN model with the 53 parameters estimated by the ANN for improving the accuracy of HOF has been developed. The app can help NBA fans to predict their players likely to be inducted into the HOF and is not just limited to the active NBA players.

Suggested Citation

  • Po-Hsin Chou & Tsair-Wei Chien & Ting-Ya Yang & Yu-Tsen Yeh & Willy Chou & Chao-Hung Yeh, 2021. "Predicting Active NBA Players Most Likely to Be Inducted into the Basketball Hall of Famers Using Artificial Neural Networks in Microsoft Excel: Development and Usability Study," IJERPH, MDPI, vol. 18(8), pages 1-18, April.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:8:p:4256-:d:537933
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/8/4256/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/8/4256/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin-Yen Wang & Tsair-Wei Chien & Willy Chou, 2021. "Using the IPcase Index with Inflection Points and the Corresponding Case Numbers to Identify the Impact Hit by COVID-19 in China: An Observation Study," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    2. David Andrich, 1978. "A rating formulation for ordered response categories," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 561-573, December.
    3. Kyent-Yon Yie & Tsair-Wei Chien & Yu-Tsen Yeh & Willy Chou & Shih-Bin Su, 2021. "Using Social Network Analysis to Identify Spatiotemporal Spread Patterns of COVID-19 around the World: Online Dashboard Development," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Hsin-Li & Yang, Cheng-Hua, 2008. "Explore airlines’ brand niches through measuring passengers’ repurchase motivation—an application of Rasch measurement," Journal of Air Transport Management, Elsevier, vol. 14(3), pages 105-112.
    2. Ivana Bassi & Matteo Carzedda & Enrico Gori & Luca Iseppi, 2022. "Rasch analysis of consumer attitudes towards the mountain product label," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-25, December.
    3. Wanke, Peter Fernandes & Chiappetta Jabbour, Charbel José & Moreira Antunes, Jorge Junio & Lopes de Sousa Jabbour, Ana Beatriz & Roubaud, David & Sobreiro, Vinicius Amorim & Santibanez Gonzalez‬, Erne, 2021. "An original information entropy-based quantitative evaluation model for low-carbon operations in an emerging market," International Journal of Production Economics, Elsevier, vol. 234(C).
    4. Hua-Hua Chang, 1996. "The asymptotic posterior normality of the latent trait for polytomous IRT models," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 445-463, September.
    5. Curt Hagquist & Raili Välimaa & Nina Simonsen & Sakari Suominen, 2017. "Differential Item Functioning in Trend Analyses of Adolescent Mental Health – Illustrative Examples Using HBSC-Data from Finland," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 10(3), pages 673-691, September.
    6. Wang, Luming & Finn, Adam, 2014. "A psychometric theory that measures up to marketing reality: An adapted Many Faceted IRT model," Australasian marketing journal, Elsevier, vol. 22(2), pages 93-102.
    7. Huang, Jen-Hung & Peng, Kua-Hsin, 2012. "Fuzzy Rasch model in TOPSIS: A new approach for generating fuzzy numbers to assess the competitiveness of the tourism industries in Asian countries," Tourism Management, Elsevier, vol. 33(2), pages 456-465.
    8. Wendy L. Martin & Alexander McKelvie & G. T. Lumpkin, 2016. "Centralization and delegation practices in family versus non-family SMEs: a Rasch analysis," Small Business Economics, Springer, vol. 47(3), pages 755-769, October.
    9. Chang, Hsin-Li & Wu, Shun-Cheng, 2008. "Exploring the vehicle dependence behind mode choice: Evidence of motorcycle dependence in Taipei," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 307-320, February.
    10. Silvia Golia, 2015. "Assessing the impact of uniform and nonuniform differential item functioning items on Rasch measure: the polytomous case," Computational Statistics, Springer, vol. 30(2), pages 441-461, June.
    11. Jesper Tijmstra & Maria Bolsinova, 2019. "Bayes Factors for Evaluating Latent Monotonicity in Polytomous Item Response Theory Models," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 846-869, September.
    12. Salzberger, Thomas & Koller, Monika, 2013. "Towards a new paradigm of measurement in marketing," Journal of Business Research, Elsevier, vol. 66(9), pages 1307-1317.
    13. Richard N McNeely & Salissou Moutari & Samuel Arba-Mosquera & Shwetabh Verma & Jonathan E Moore, 2018. "An alternative application of Rasch analysis to assess data from ophthalmic patient-reported outcome instruments," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-32, June.
    14. Francesca DE BATTISTI & Giovanna NICOLINI & Silvia SALINI, 2008. "Methodological overview of Rasch model and application in customer satisfaction survey data," Departmental Working Papers 2008-04, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    15. Kuan-Yu Jin & Yi-Jhen Wu & Hui-Fang Chen, 2022. "A New Multiprocess IRT Model With Ideal Points for Likert-Type Items," Journal of Educational and Behavioral Statistics, , vol. 47(3), pages 297-321, June.
    16. van der Ark, L. Andries, 2012. "New Developments in Mokken Scale Analysis in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i05).
    17. Piotr Tarka, 2013. "Model of latent profile factor analysis for ordered categorical data," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(1), pages 171-182, March.
    18. Xiaohui Zheng & Sophia Rabe-Hesketh, 2007. "Estimating parameters of dichotomous and ordinal item response models with gllamm," Stata Journal, StataCorp LLC, vol. 7(3), pages 313-333, September.
    19. Purya Baghaei & Jerrell Cassady, 2014. "Validation of the Persian Translation of the Cognitive Test Anxiety Scale," SAGE Open, , vol. 4(4), pages 21582440145, November.
    20. Kenneth Royal & Liara Gonzalez, 2016. "An Evaluation of the Psychometric Properties of an Advising Survey for Medical and Professional Program Students," Journal of Educational and Developmental Psychology, Canadian Center of Science and Education, vol. 6(1), pages 195-195, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:8:p:4256-:d:537933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.