IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i24p13056-d699764.html
   My bibliography  Save this article

Effect of Climate Change on CO 2 Flux in Temperate Grassland, Subtropical Artificial Coniferous Forest and Tropical Rain Forest Ecosystems

Author

Listed:
  • Zihao Man

    (School of Design, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Shengquan Che

    (School of Design, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Changkun Xie

    (School of Design, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Ruiyuan Jiang

    (School of Design, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Anze Liang

    (School of Design, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Hao Wu

    (School of Design, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract

The interactions between CO 2 flux, an important component of ecosystem carbon flux, and climate change vary significantly among different ecosystems. In this research, the inter-annual variation characteristics of ecosystem respiration (RE), gross ecosystem exchange (GEE), and net ecosystem exchange (NEE) were explored in the temperate grassland (TG) of Xilinhot (2004–2010), the subtropical artificial coniferous forest (SACF) of Qianyanzhou (2003–2010), and the tropical rain forest (TRF) of Xishuangbanna (2003–2010). The main factors of climate change affecting ecosystem CO 2 flux were identified by redundancy analysis, and exponential models and temperature indicators were constructed to consider the relationship between climate change and CO 2 flux. Every year from 2003 to 2010, RE and GEE first increased and then decreased, and NEE showed no significant change pattern. TG was a carbon source, whereas SACF and TRF were carbon sinks. The influence of air temperature on RE and GEE was greater than that of soil temperature, but the influence of soil moisture on RE and GEE was greater than that of air moisture. Compared with moisture and photosynthetically active radiation, temperature had the greatest impact on CO 2 flux and the exponential model had the best fitting effect. In TG and SACF, the average temperature was the most influential factor, and in TRF, the accumulated temperature was the most influential factor. These results provide theoretical support for mitigating and managing climate change and provide references for achieving carbon neutrality.

Suggested Citation

  • Zihao Man & Shengquan Che & Changkun Xie & Ruiyuan Jiang & Anze Liang & Hao Wu, 2021. "Effect of Climate Change on CO 2 Flux in Temperate Grassland, Subtropical Artificial Coniferous Forest and Tropical Rain Forest Ecosystems," IJERPH, MDPI, vol. 18(24), pages 1-18, December.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:24:p:13056-:d:699764
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/24/13056/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/24/13056/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ram Shah & Subodh Sharma & Peter Haase & Sonja Jähnig & Steffen Pauls, 2015. "The climate sensitive zone along an altitudinal gradient in central Himalayan rivers: a useful concept to monitor climate change impacts in mountain regions," Climatic Change, Springer, vol. 132(2), pages 265-278, September.
    2. Brendan Choat & Timothy J. Brodribb & Craig R. Brodersen & Remko A. Duursma & Rosana López & Belinda E. Medlyn, 2018. "Triggers of tree mortality under drought," Nature, Nature, vol. 558(7711), pages 531-539, June.
    3. Jian-Sheng Ye & James Reynolds & Guo-Jun Sun & Feng-Min Li, 2013. "Impacts of increased variability in precipitation and air temperature on net primary productivity of the Tibetan Plateau: a modeling analysis," Climatic Change, Springer, vol. 119(2), pages 321-332, July.
    4. Moon-Hwan Lee & Deg-Hyo Bae, 2015. "Climate Change Impact Assessment on Green and Blue Water over Asian Monsoon Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2407-2427, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deg-Hyo Bae & Toshio Koike & Jehangir Awan & Moon-Hwan Lee & Kyung-Hwan Sohn, 2015. "Climate Change Impact Assessment on Water Resources and Susceptible Zones Identification in the Asian Monsoon Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5377-5393, November.
    2. Daijun Liu & Adriane Esquivel-Muelbert & Nezha Acil & Julen Astigarraga & Emil Cienciala & Jonas Fridman & Georges Kunstler & Thomas J. Matthews & Paloma Ruiz-Benito & Jonathan P. Sadler & Mart-Jan Sc, 2024. "Mapping multi-dimensional variability in water stress strategies across temperate forests," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Dang, Hongzhong & Han, Hui & Chen, Shuai & Li, Mingyang, 2021. "A fragile soil moisture environment exacerbates the climate change-related impacts on the water use by Mongolian Scots pine (Pinus sylvestris var. mongolica) in northern China: Long-term observations," Agricultural Water Management, Elsevier, vol. 251(C).
    4. Zafar Hussain & Zongmin Wang & Jiaxue Wang & Haibo Yang & Muhammad Arfan & Daniyal Hassan & Wusen Wang & Muhammad Imran Azam & Muhammad Faisal, 2022. "A comparative Appraisal of Classical and Holistic Water Scarcity Indicators," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 931-950, February.
    5. Bhumika Uniyal & Madan Jha & Arbind Verma, 2015. "Assessing Climate Change Impact on Water Balance Components of a River Basin Using SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4767-4785, October.
    6. Alejandro Martínez-Calvo & Matthew D. Biviano & Anneline H. Christensen & Eleni Katifori & Kaare H. Jensen & Miguel Ruiz-García, 2024. "The fluidic memristor as a collective phenomenon in elastohydrodynamic networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Subbarao Pichuka & Rajib Maity, 2020. "Assessment of Extreme Precipitation in Future through Time-Invariant and Time-Varying Downscaling Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1809-1826, March.
    8. Donna L. Fitzgerald & Stefan Peters & Gregory R. Guerin & Andrew McGrath & Gunnar Keppel, 2023. "Quantifying Dieback in a Vulnerable Population of Eucalyptus macrorhyncha Using Remote Sensing," Land, MDPI, vol. 12(7), pages 1-19, June.
    9. Xianliang Zhang & Tim Rademacher & Hongyan Liu & Lu Wang & Rubén D. Manzanedo, 2023. "Fading regulation of diurnal temperature ranges on drought-induced growth loss for drought-tolerant tree species," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Moon-Hwan Lee & Deg-Hyo Bae & Eun-Soon Im, 2019. "Effect of the Horizontal Resolution of Climate Simulations on the Hydrological Representation of Extreme Low and High Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4653-4666, October.
    11. Song, Lining & Zhu, Jiaojun & Zheng, Xiao & Li, Xinjunyan & Wang, Kai & Zhang, Jinxin & Wang, Guochen & Sun, Haihong, 2023. "Water use dynamics of trees in a Pinus tabuliformis plantation in semiarid sandy regions, Northeast China," Agricultural Water Management, Elsevier, vol. 275(C).
    12. Mengyuan Zhang & Shuaipeng Chen & Wenping Liu, 2023. "Disentangling the Complexity of Regional Ecosystem Degradation: Uncovering the Interconnected Natural-Social Drivers of Quantity and Quality Loss," Land, MDPI, vol. 12(7), pages 1-18, June.
    13. Guo, Youzheng & Ma, Yingjun & Ding, Changjun & Di, Nan & Liu, Yang & Tan, Jianbiao & Zhang, Shusen & Yu, Weichen & Gao, Guixi & Duan, Jie & Xi, Benye & Li, Ximeng, 2023. "Plant hydraulics provide guidance for irrigation management in mature polar plantation," Agricultural Water Management, Elsevier, vol. 275(C).
    14. Shuai Ye & Yuejing Ge & Shiyu Xu & Xiaofan Ma, 2022. "Measurement and Prediction of Coupling Coordination Level of Economic Development, Social Stability and Ecological Environment in Qinghai—Thoughts on Sustainable Societal Safety," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    15. Dai, Junjie & Zhao, Ying & Seki, Katsutoshi & Wang, Li, 2024. "Changes in water-use strategies and soil water status of degraded poplar plantations in water-limited areas," Agricultural Water Management, Elsevier, vol. 296(C).
    16. Zhang, Zhongdian & Huang, Mingbin, 2021. "Effect of root-zone vertical soil moisture heterogeneity on water transport safety in soil-plant-atmosphere continuum in Robinia pseudoacacia," Agricultural Water Management, Elsevier, vol. 246(C).
    17. Liu, Qiuyu & Peng, Changhui & Schneider, Robert & Cyr, Dominic & Liu, Zelin & Zhou, Xiaolu & Kneeshaw, Daniel, 2021. "TRIPLEX-Mortality model for simulating drought-induced tree mortality in boreal forests: Model development and evaluation," Ecological Modelling, Elsevier, vol. 455(C).
    18. Zihe, Liu & Guodong, Jia & Xinxiao, Yu & Weiwei, Lu & Libo, Sun & Yusong, Wang & Baheti, Zierdie, 2021. "Morphological trait as a determining factor for Populus simonii Carr. to survive from drought in semi-arid region," Agricultural Water Management, Elsevier, vol. 253(C).
    19. Yu, Rui, 2020. "An improved estimation of net primary productivity of grassland in the Qinghai-Tibet region using light use efficiency with vegetation photosynthesis model," Ecological Modelling, Elsevier, vol. 431(C).
    20. Zhao Li & Philippe Ciais & Jonathon S. Wright & Yong Wang & Shu Liu & Jingmeng Wang & Laurent Z. X. Li & Hui Lu & Xiaomeng Huang & Lei Zhu & Daniel S. Goll & Wei Li, 2023. "Increased precipitation over land due to climate feedback of large-scale bioenergy cultivation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:24:p:13056-:d:699764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.