IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i23p12465-d688953.html
   My bibliography  Save this article

Micromobility Users’ Behaviour and Perceived Risk during Meeting Manoeuvres

Author

Listed:
  • Alejandra Sofía Fonseca-Cabrera

    (Highway Engineering Research Group, Universitat Politècnica de València, 46022 Valencia, Spain)

  • David Llopis-Castelló

    (Highway Engineering Research Group, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Ana María Pérez-Zuriaga

    (Highway Engineering Research Group, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Carlos Alonso-Troyano

    (Highway Engineering Research Group, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Alfredo García

    (Highway Engineering Research Group, Universitat Politècnica de València, 46022 Valencia, Spain)

Abstract

Mobility patterns and lifestyles have changed in recent years in cities worldwide, thanks to the strong rise in modes of travel commonly referred to as micromobility. In this context, e-scooters have experienced a great rise globally which has led to an increase of crashes involving this type of micromobility vehicle in urban areas. Thus, there is a need to study e-scooter users’ behaviour and their interaction with cyclists. This research aimed at characterizing the meeting manoeuvre between micromobility users along diverse typologies of two-way bicycle track by using an instrumented e-scooter. As a result, bicycle tracks having concrete or vegetated curb presented lower clearance distance (≈0.8 m) than those without edge elements (>1 m), with no statistically significant differences found between the interaction with bicycles and e-scooters. Additionally, an online questionnaire was proposed to assess users’ perceived risk during the meeting manoeuvre, concluding that micromobility users feel safer and more comfortable riding on pavements away from parked or moving motorized traffic, and on protected bicycle tracks.

Suggested Citation

  • Alejandra Sofía Fonseca-Cabrera & David Llopis-Castelló & Ana María Pérez-Zuriaga & Carlos Alonso-Troyano & Alfredo García, 2021. "Micromobility Users’ Behaviour and Perceived Risk during Meeting Manoeuvres," IJERPH, MDPI, vol. 18(23), pages 1-14, November.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:23:p:12465-:d:688953
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/23/12465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/23/12465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bai, Lu & Liu, Pan & Chan, Ching-Yao & Li, Zhibin, 2017. "Estimating level of service of mid-block bicycle lanes considering mixed traffic flow," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 203-217.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yuting & Nelson, John D. & Mulley, Corinne, 2024. "Learning from the evidence: Insights for regulating e-scooters," Transport Policy, Elsevier, vol. 151(C), pages 63-74.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    2. Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Montoya, Alejandro, 2022. "The maximal covering bicycle network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 222-236.
    3. Andreas Nikiforiadis & Socrates Basbas & Foteini Mikiki & Aikaterini Oikonomou & Efrosyni Polymeroudi, 2021. "Pedestrians-Cyclists Shared Spaces Level of Service: Comparison of Methodologies and Critical Discussion," Sustainability, MDPI, vol. 13(1), pages 1-19, January.
    4. Xiangyang Cao & Bingzhong Zhou & Qiang Tang & Jiaqi Li & Donghui Shi, 2018. "Urban Wasteful Transport and Its Estimation Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    5. Arellana, Julián & Saltarín, María & Larrañaga, Ana Margarita & González, Virginia I. & Henao, César Augusto, 2020. "Developing an urban bikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 310-334.
    6. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    7. Liang, Xiao & Zhang, Tianyu & Xie, Meiquan & Jia, Xudong, 2021. "Analyzing bicycle level of service using virtual reality and deep learning technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 115-129.
    8. Ehsan Nateghinia & David Beitel & Asad Lesani & Luis F. Miranda-Moreno, 2024. "A LiDAR-based methodology for monitoring and collecting microscopic bicycle flow parameters on bicycle facilities," Transportation, Springer, vol. 51(1), pages 129-153, February.
    9. Changxi Ma & Jibiao Zhou & Dong Yang & Yuanyuan Fan, 2020. "Research on the Relationship between the Individual Characteristics of Electric Bike Riders and Illegal Speeding Behavior: A Questionnaire-Based Study," Sustainability, MDPI, vol. 12(3), pages 1-12, January.
    10. Fan, Zhang & Yanjie, Ji & Huitao, Lv & Yuqian, Zhang & Blythe, Phil & Jialiang, Fan, 2022. "Travel satisfaction of delivery electric two-wheeler riders: Evidence from Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 253-266.
    11. Huang, Di & Chen, Xinyuan & Liu, Zhiyuan & Lyu, Cheng & Wang, Shuaian & Chen, Xuewu, 2020. "A static bike repositioning model in a hub-and-spoke network framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    12. Liu, Qiang & Homma, Riken & Iki, Kazuhisa, 2020. "Evaluating cyclists’ perception of satisfaction using 360° videos," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 205-213.
    13. Li, Xintong & Han, Chunyang & Huang, Helai & Pervez, Amjad & Xu, Guangming & Hu, Cheng & Jiang, Qianshan & Wei, Yulu, 2023. "Pursuing higher acceptability and compliance for electric two-wheeler standardization policy in China: The importance of socio-demographic characteristics, psychological factors, and travel habits," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    14. Panagiotis G. Tzouras & Lambros Mitropoulos & Katerina Koliou & Eirini Stavropoulou & Christos Karolemeas & Eleni Antoniou & Antonis Karaloulis & Konstantinos Mitropoulos & Eleni I. Vlahogianni & Kons, 2023. "Describing Micro-Mobility First/Last-Mile Routing Behavior in Urban Road Networks through a Novel Modeling Approach," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    15. Cheng, Zeyang & Wang, Wei & Lu, Jian & Xing, Xue, 2020. "Classifying the traffic state of urban expressways: A machine-learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 411-428.
    16. Siying Zhu & Feng Zhu, 2020. "Multi-objective bike-way network design problem with space–time accessibility constraint," Transportation, Springer, vol. 47(5), pages 2479-2503, October.
    17. Xinhua Mao & Changwei Yuan & Jiahua Gan & Shiqing Zhang, 2019. "Risk Factors Affecting Traffic Accidents at Urban Weaving Sections: Evidence from China," IJERPH, MDPI, vol. 16(9), pages 1-17, May.
    18. Agarwal, Amit & Ziemke, Dominik & Nagel, Kai, 2020. "Bicycle superhighway: An environmentally sustainable policy for urban transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 519-540.
    19. Zhao, Jing & Yan, Jiachao & Wang, Jiawen, 2019. "Analysis of alternative treatments for left turn bicycles at tandem intersections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 314-328.
    20. Theodora Sorkou & Panagiotis G. Tzouras & Katerina Koliou & Lambros Mitropoulos & Christos Karolemeas & Konstantinos Kepaptsoglou, 2022. "An Approach to Model the Willingness to Use of E-Scooter Sharing Services in Different Urban Road Environments," Sustainability, MDPI, vol. 14(23), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:23:p:12465-:d:688953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.