IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i18p9780-d637253.html
   My bibliography  Save this article

Risk Assessment of Hazmat Road Transportation Considering Environmental Risk under Time-Varying Conditions

Author

Listed:
  • Liping Liu

    (School of Business, East China University of Science and Technology, Shanghai 200237, China)

  • Qing Wu

    (School of Business, East China University of Science and Technology, Shanghai 200237, China)

  • Shuxia Li

    (School of Business, East China University of Science and Technology, Shanghai 200237, China)

  • Ying Li

    (School of Business, East China University of Science and Technology, Shanghai 200237, China)

  • Tijun Fan

    (School of Business, East China University of Science and Technology, Shanghai 200237, China)

Abstract

Hazardous materials shipments are integral to the development of industrial countries. Significant casualties and severe environmental pollution quickly ensue when accidents occur. Currently, relevant research on risk assessment of hazardous materials’ road transportation remains limited when both the population exposure risk and environmental risk are considered, especially in regard to analyzing the differences of accident impacts in different populations and environments. This paper adopts a Gaussian plume model to simulate dynamic areas at three levels of population exposure and assesses the pollution scope of air, groundwater, lakes, and rivers with a variety of diffusion models. Then, we utilize various costs to analyze the differences of accident impacts in population exposure and environmental pollution. Finally, a risk assessment model of hazardous materials road transportation under time-varying conditions is presented by considering the bearing capacity of the assessed area. Furthermore, this model is applied to a case study involving a risk assessment of hazardous materials transportation of a highly populated metropolitan area of Shanghai, China. The resulting analyses reveal that the safety of hazardous materials transportation could be effectively improved by controlling certain model parameters and avoiding road segments with a high risk of catastrophic accident consequences.

Suggested Citation

  • Liping Liu & Qing Wu & Shuxia Li & Ying Li & Tijun Fan, 2021. "Risk Assessment of Hazmat Road Transportation Considering Environmental Risk under Time-Varying Conditions," IJERPH, MDPI, vol. 18(18), pages 1-19, September.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9780-:d:637253
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/18/9780/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/18/9780/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yingying Kang & Rajan Batta & Changhyun Kwon, 2014. "Value-at-Risk model for hazardous material transportation," Annals of Operations Research, Springer, vol. 222(1), pages 361-387, November.
    2. Xifei Huang & Xinhao Wang & Jingjing Pei & Ming Xu & Xiaowu Huang & Yun Luo, 2018. "Risk assessment of the areas along the highway due to hazardous material transportation accidents," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1181-1202, September.
    3. Erhan Erkut & Armann Ingolfsson, 2000. "Catastrophe Avoidance Models for Hazardous Materials Route Planning," Transportation Science, INFORMS, vol. 34(2), pages 165-179, May.
    4. Sheng Dong & Jibiao Zhou & Changxi Ma, 2020. "Design of a Network Optimization Platform for the Multivehicle Transportation of Hazardous Materials," IJERPH, MDPI, vol. 17(3), pages 1-14, February.
    5. Xu, Chengcheng & Wang, Yong & Liu, Pan & Wang, Wei & Bao, Jie, 2018. "Quantitative risk assessment of freeway crash casualty using high-resolution traffic data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 299-311.
    6. Guiyou Zhang & Shuai Luo & Zhuowei Jing & Shuo Wei & Youhua Ma, 2020. "Evaluation and Forewarning Management of Regional Resources and Environment Carrying Capacity: A Case Study of Hefei City, Anhui Province, China," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Jian & Luo, Cheng & Ma, Kaijiang, 2023. "Risk coupling analysis of road transportation accidents of hazardous materials in complicated maritime environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohri, Seyed Sina & Mohammadi, Mehrdad & Gendreau, Michel & Pirayesh, Amir & Ghasemaghaei, Ali & Salehi, Vahid, 2022. "Hazardous material transportation problems: A comprehensive overview of models and solution approaches," European Journal of Operational Research, Elsevier, vol. 302(1), pages 1-38.
    2. Hosseini, S. Davod & Verma, Manish, 2018. "Conditional value-at-risk (CVaR) methodology to optimal train configuration and routing of rail hazmat shipments," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 79-103.
    3. Kumar, Anand & Roy, Debjit & Verter, Vedat & Sharma, Dheeraj, 2018. "Integrated fleet mix and routing decision for hazmat transportation: A developing country perspective," European Journal of Operational Research, Elsevier, vol. 264(1), pages 225-238.
    4. Chiou, Suh-Wen, 2018. "A traffic-responsive signal control to enhance road network resilience with hazmat transportation in multiple periods," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 105-118.
    5. Liu Su & Changhyun Kwon, 2020. "Risk-Averse Network Design with Behavioral Conditional Value-at-Risk for Hazardous Materials Transportation," Transportation Science, INFORMS, vol. 54(1), pages 184-203, January.
    6. Shuxia Li & Yuedan Zu & Huimin Fang & Liping Liu & Tijun Fan, 2021. "Design Optimization of a HAZMAT Multimodal Hub-and-Spoke Network with Detour," IJERPH, MDPI, vol. 18(23), pages 1-18, November.
    7. Bogyrbayeva, Aigerim & Kwon, Changhyun, 2021. "Pessimistic evasive flow capturing problems," European Journal of Operational Research, Elsevier, vol. 293(1), pages 133-148.
    8. Bo Yang & Yao Wu & Weihua Zhang & Jie Bao, 2020. "Modeling Collision Probability on Freeway: Accounting for Different Types and Severities in Various LOS," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    9. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    10. Sheng Dong & Jibiao Zhou & Changxi Ma, 2020. "Design of a Network Optimization Platform for the Multivehicle Transportation of Hazardous Materials," IJERPH, MDPI, vol. 17(3), pages 1-14, February.
    11. Ke, Ginger Y. & Zhang, Huiwen & Bookbinder, James H., 2020. "A dual toll policy for maintaining risk equity in hazardous materials transportation with fuzzy incident rate," International Journal of Production Economics, Elsevier, vol. 227(C).
    12. Monika Blišťanová & Peter Koščák & Michaela Tirpáková & Magdaléna Ondicová, 2023. "A Cross-Comparative Analysis of Transportation Safety Research," Sustainability, MDPI, vol. 15(9), pages 1-14, May.
    13. Wei-Ling Hsu & Xijuan Shen & Haiying Xu & Chunmei Zhang & Hsin-Lung Liu & Yan-Chyuan Shiau, 2021. "Integrated Evaluations of Resource and Environment Carrying Capacity of the Huaihe River Ecological and Economic Belt in China," Land, MDPI, vol. 10(11), pages 1-21, October.
    14. Amirsaman Kheirkhah & HamidReza Navidi & Masume Messi Bidgoli, 2016. "A bi-level network interdiction model for solving the hazmat routing problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 459-471, January.
    15. Tsung-Sheng Chang & Linda K. Nozick & Mark A. Turnquist, 2005. "Multiobjective Path Finding in Stochastic Dynamic Networks, with Application to Routing Hazardous Materials Shipments," Transportation Science, INFORMS, vol. 39(3), pages 383-399, August.
    16. Fontaine, Pirmin & Crainic, Teodor Gabriel & Gendreau, Michel & Minner, Stefan, 2020. "Population-based risk equilibration for the multimode hazmat transport network design problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 188-200.
    17. Xu, Chengcheng & Xu, Shuoyan & Wang, Chen & Li, Jing, 2019. "Investigating the factors affecting secondary crash frequency caused by one primary crash using zero-inflated ordered probit regression," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 121-129.
    18. Yingying Kang & Rajan Batta & Changhyun Kwon, 2014. "Value-at-Risk model for hazardous material transportation," Annals of Operations Research, Springer, vol. 222(1), pages 361-387, November.
    19. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    20. Guo, Jian & Luo, Cheng & Ma, Kaijiang, 2023. "Risk coupling analysis of road transportation accidents of hazardous materials in complicated maritime environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9780-:d:637253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.