IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i17p9075-d623781.html
   My bibliography  Save this article

Important Contributions to Reducing Nitrogen Oxide Emissions from Internal Combustion Engines

Author

Listed:
  • Daniela Laura Buruiana

    (Interdisciplinary Research Centre in the Field of Eco-Nano Technology, Advance Materials CC-ITI, Faculty of Engineering, “Dunarea de Jos” University of Galati, 47 Domneasca, 800008 Galati, Romania)

  • Adrian Sachelarie

    (Faculty of Mechanical Engineering, “Gheorghe Asachi” Technical University of Iasi, 61–63 Mangeron Blvd, 700050 Iasi, Romania)

  • Claudiu Butnaru

    (Faculty of Mechanical Engineering, “Gheorghe Asachi” Technical University of Iasi, 61–63 Mangeron Blvd, 700050 Iasi, Romania)

  • Viorica Ghisman

    (Interdisciplinary Research Centre in the Field of Eco-Nano Technology, Advance Materials CC-ITI, Faculty of Engineering, “Dunarea de Jos” University of Galati, 47 Domneasca, 800008 Galati, Romania)

Abstract

Nitrogen oxides are considered significant pollutants because of their effects on ecosystems and human health. The amount of NO x emitted by internal combustion engines can be reduced, mostly by acting on the conditions in which combustion takes place, respectively by lowering the peak flame temperature, reducing the excess of oxygen, etc. The homogeneous charge compression ignition (HCCI) engine represents a new technology that can simultaneously reduce NO x emissions and fuel consumption. This article presents these benefits of the HCCI engine by comparing the emissions and fuel consumption of a monocylinder engine when it is operated in a conventional way, with spark ignition, with those obtained when the engine is running in the HCCI mode. Moreover, since engine simulation has become an important tool for investigating the HCCI process and for developing new control strategies for it, this was used in this study to determine the effects of the exhaust gas recirculation on the combustion quality, respectively, on emissions.

Suggested Citation

  • Daniela Laura Buruiana & Adrian Sachelarie & Claudiu Butnaru & Viorica Ghisman, 2021. "Important Contributions to Reducing Nitrogen Oxide Emissions from Internal Combustion Engines," IJERPH, MDPI, vol. 18(17), pages 1-13, August.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:17:p:9075-:d:623781
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/17/9075/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/17/9075/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gan, Suyin & Ng, Hoon Kiat & Pang, Kar Mun, 2011. "Homogeneous Charge Compression Ignition (HCCI) combustion: Implementation and effects on pollutants in direct injection diesel engines," Applied Energy, Elsevier, vol. 88(3), pages 559-567, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lebogang Phama & Goitsemang Keretetse & Thokozani Mbonane & Phoka Rathebe & Robert Makae & Masilu Daniel Masekameni, 2024. "BTEX Assessment among Informal Charcoal-Burning Food Traders for Cleaner and Sustainable Environment," Sustainability, MDPI, vol. 16(8), pages 1-20, April.
    2. Lijia Fang & Hardeep Singh & Takuma Ohashi & Masato Sanno & Guansen Lin & Emir Yilmaz & Mitsuhisa Ichiyanagi & Takashi Suzuki, 2024. "Effect of Machine Learning Algorithms on Prediction of In-Cylinder Combustion Pressure of Ammonia–Oxygen in a Constant-Volume Combustion Chamber," Energies, MDPI, vol. 17(3), pages 1-11, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Tian & Hongchuan Zhang & Lenian Wang & Zhiqiang Han & Wenbin Yu, 2020. "Effect of Premixed n-Butanol Ratio on the Initial Stage of Combustion in a Light-Duty Butanol/Diesel Dual-Fuel Engine," Energies, MDPI, vol. 13(17), pages 1-10, August.
    2. Ghazimirsaied, Ahmad & Koch, Charles Robert, 2012. "Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine," Applied Energy, Elsevier, vol. 92(C), pages 133-146.
    3. Liang, Chen & Ji, Changwei & Liu, Xiaolong, 2011. "Combustion and emissions performance of a DME-enriched spark-ignited methanol engine at idle condition," Applied Energy, Elsevier, vol. 88(11), pages 3704-3711.
    4. Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
    5. Fang, Cheng & Ouyang, Minggao & Tunestal, Per & Yang, Fuyuan & Yang, Xiaofan, 2018. "Closed-loop combustion phase control for multiple combustion modes by multiple injections in a compression ignition engine fueled by gasoline-diesel mixture," Applied Energy, Elsevier, vol. 231(C), pages 816-825.
    6. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    7. Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Roberto Meloni & Vincenzo Naso, 2013. "An Insight into the Effect of Advanced Injection Strategies on Pollutant Emissions of a Heavy-Duty Diesel Engine," Energies, MDPI, vol. 6(9), pages 1-21, August.
    9. Zhu, Mingming & Ma, Yu & Zhang, Dongke, 2012. "Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine," Applied Energy, Elsevier, vol. 91(1), pages 166-172.
    10. Noh, Hyun Kwon & No, Soo-Young, 2017. "Effect of bioethanol on combustion and emissions in advanced CI engines: HCCI, PPC and GCI mode – A review," Applied Energy, Elsevier, vol. 208(C), pages 782-802.
    11. Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).
    12. Yin, Lianhao & Lundgren, Marcus & Wang, Zhenkan & Stamatoglou, Panagiota & Richter, Mattias & Andersson, Öivind & Tunestål, Per, 2019. "High efficient internal combustion engine using partially premixed combustion with multiple injections," Applied Energy, Elsevier, vol. 233, pages 516-523.
    13. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Yunus khan, T.M. & Badruddin, Irfan Anjum & Badarudin, Ahmad & Banapurmath, N.R. & Salman Ahmed, N.J. & Quadir, G.A. & Al-Rashed, Abdullah A.A.A. & Khaleed, H.M.T. & Kamangar, Sarfaraz, 2015. "Effects of engine variables and heat transfer on the performance of biodiesel fueled IC engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 682-691.
    15. Torregrosa, A.J. & Broatch, A. & García, A. & Mónico, L.F., 2013. "Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines," Applied Energy, Elsevier, vol. 104(C), pages 149-157.
    16. Charitha, V. & Thirumalini, S. & Prasad, M. & Srihari, S., 2019. "Investigation on performance and emissions of RCCI dual fuel combustion on diesel - bio diesel in a light duty engine," Renewable Energy, Elsevier, vol. 134(C), pages 1081-1088.
    17. Wang, Jinli & Yang, Fuyuan & Ouyang, Minggao, 2015. "Dieseline fueled flexible fuel compression ignition engine control based on in-cylinder pressure sensor," Applied Energy, Elsevier, vol. 159(C), pages 87-96.
    18. Yang, Fuyuan & Wang, Jinli & Gao, Guojing & Ouyang, Minggao, 2014. "In-cycle diesel low temperature combustion control based on SOC detection," Applied Energy, Elsevier, vol. 136(C), pages 77-88.
    19. Hung, Nguyen Ba & Lim, Ocktaeck & Iida, Norimasa, 2015. "The effects of key parameters on the transition from SI combustion to HCCI combustion in a two-stroke free piston linear engine," Applied Energy, Elsevier, vol. 137(C), pages 385-401.
    20. Tauzia, Xavier & Maiboom, Alain, 2013. "Experimental study of an automotive Diesel engine efficiency when running under stoichiometric conditions," Applied Energy, Elsevier, vol. 105(C), pages 116-124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:17:p:9075-:d:623781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.