IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i14p7534-d594803.html
   My bibliography  Save this article

Risky Driver Recognition with Class Imbalance Data and Automated Machine Learning Framework

Author

Listed:
  • Ke Wang

    (Key Laboratory of Road and Traffic Engineering of the State Ministry of Education, College of Transportation Engineering, Tongji University, Shanghai 201804, China)

  • Qingwen Xue

    (Key Laboratory of Road and Traffic Engineering of the State Ministry of Education, College of Transportation Engineering, Tongji University, Shanghai 201804, China)

  • Jian John Lu

    (Key Laboratory of Road and Traffic Engineering of the State Ministry of Education, College of Transportation Engineering, Tongji University, Shanghai 201804, China)

Abstract

Identifying high-risk drivers before an accident happens is necessary for traffic accident control and prevention. Due to the class-imbalance nature of driving data, high-risk samples as the minority class are usually ill-treated by standard classification algorithms. Instead of applying preset sampling or cost-sensitive learning, this paper proposes a novel automated machine learning framework that simultaneously and automatically searches for the optimal sampling, cost-sensitive loss function, and probability calibration to handle class-imbalance problem in recognition of risky drivers. The hyperparameters that control sampling ratio and class weight, along with other hyperparameters, are optimized by Bayesian optimization. To demonstrate the performance of the proposed automated learning framework, we establish a risky driver recognition model as a case study, using video-extracted vehicle trajectory data of 2427 private cars on a German highway. Based on rear-end collision risk evaluation, only 4.29% of all drivers are labeled as risky drivers. The inputs of the recognition model are the discrete Fourier transform coefficients of target vehicle’s longitudinal speed, lateral speed, and the gap between the target vehicle and its preceding vehicle. Among 12 sampling methods, 2 cost-sensitive loss functions, and 2 probability calibration methods, the result of automated machine learning is consistent with manual searching but much more computation-efficient. We find that the combination of Support Vector Machine-based Synthetic Minority Oversampling TEchnique (SVMSMOTE) sampling, cost-sensitive cross-entropy loss function, and isotonic regression can significantly improve the recognition ability and reduce the error of predicted probability.

Suggested Citation

  • Ke Wang & Qingwen Xue & Jian John Lu, 2021. "Risky Driver Recognition with Class Imbalance Data and Automated Machine Learning Framework," IJERPH, MDPI, vol. 18(14), pages 1-18, July.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:14:p:7534-:d:594803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/14/7534/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/14/7534/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ke Wang & Qingwen Xue & Yingying Xing & Chongyi Li, 2020. "Improve Aggressive Driver Recognition Using Collision Surrogate Measurement and Imbalanced Class Boosting," IJERPH, MDPI, vol. 17(7), pages 1-17, March.
    2. Chao Deng & Chaozhong Wu & Nengchao Lyu & Zhen Huang, 2017. "Driving style recognition method using braking characteristics based on hidden Markov model," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-15, August.
    3. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    4. Fanyu Wang & Junyou Zhang & Shufeng Wang & Sixian Li & Wenlan Hou, 2020. "Analysis of Driving Behavior Based on Dynamic Changes of Personality States," IJERPH, MDPI, vol. 17(2), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonis Kostopoulos & Thodoris Garefalakis & Eva Michelaraki & Christos Katrakazas & George Yannis, 2024. "Modeling and Sustainability Implications of Harsh Driving Events: A Predictive Machine Learning Approach," Sustainability, MDPI, vol. 16(14), pages 1-20, July.
    2. Wen, Jianghui & Zhan, Xiaomei & Wu, Chaozhong & Xiao, Xinping & Lyu, Nengchao, 2023. "Risky driving behavior propagation: A novel stochastic SIR model and two-stage risk quantification method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    2. Jie-Huei Wang & Cheng-Yu Liu & You-Ruei Min & Zih-Han Wu & Po-Lin Hou, 2024. "Cancer Diagnosis by Gene-Environment Interactions via Combination of SMOTE-Tomek and Overlapped Group Screening Approaches with Application to Imbalanced TCGA Clinical and Genomic Data," Mathematics, MDPI, vol. 12(14), pages 1-24, July.
    3. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    4. João Chang Junior & Fábio Binuesa & Luiz Fernando Caneo & Aida Luiza Ribeiro Turquetto & Elisandra Cristina Trevisan Calvo Arita & Aline Cristina Barbosa & Alfredo Manoel da Silva Fernandes & Evelinda, 2020. "Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: A pilot study," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-21, September.
    5. Arthur De Sá Ferreira & Ney Meziat-Filho & Ana Paula Antunes Ferreira, 2021. "Double threshold receiver operating characteristic plot for three-modal continuous predictors," Computational Statistics, Springer, vol. 36(3), pages 2231-2245, September.
    6. Fan, Xudong & Wang, Xiaowei & Zhang, Xijin & ASCE Xiong (Bill) Yu, P.E.F., 2022. "Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    7. Zhang, Han, 2021. "How Using Machine Learning Classification as a Variable in Regression Leads to Attenuation Bias and What to Do About It," SocArXiv 453jk, Center for Open Science.
    8. Masabho P Milali & Samson S Kiware & Nicodem J Govella & Fredros Okumu & Naveen Bansal & Serdar Bozdag & Jacques D Charlwood & Marta F Maia & Sheila B Ogoma & Floyd E Dowell & George F Corliss & Maggy, 2020. "An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
    9. Daniel R Jeske, 2018. "Metrics Used When Evaluating the Performance of Statistical Classifiers," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(1), pages 7-9, August.
    10. Juliet Chebet Moso & Stéphane Cormier & Cyril de Runz & Hacène Fouchal & John Mwangi Wandeto, 2021. "Anomaly Detection on Data Streams for Smart Agriculture," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
    11. Kajal Lahiri & Cheng Yang, 2023. "ROC and PRC Approaches to Evaluate Recession Forecasts," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(2), pages 119-148, September.
    12. Tzu-Hsuan Lin & Jehn-Ruey Jiang, 2021. "Credit Card Fraud Detection with Autoencoder and Probabilistic Random Forest," Mathematics, MDPI, vol. 9(21), pages 1-16, October.
    13. Robert A. Blair & Nicholas Sambanis, 2021. "Is Theory Useful for Conflict Prediction? A Response to Beger, Morgan, and Ward," Journal of Conflict Resolution, Peace Science Society (International), vol. 65(7-8), pages 1427-1453, August.
    14. Pereira, Vijay & Bamel, Umesh & Paul, Happy & Varma, Arup, 2022. "Personality and safety behavior: An analysis of worldwide research on road and traffic safety leading to organizational and policy implications," Journal of Business Research, Elsevier, vol. 151(C), pages 185-196.
    15. Mieke Deschepper & Willem Waegeman & Dirk Vogelaers & Kristof Eeckloo, 2020. "Using structured pathology data to predict hospital-wide mortality at admission," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-11, June.
    16. Alfred Krzywicki & David Muchlinski & Benjamin E. Goldsmith & Arcot Sowmya, 2022. "From academia to policy makers: a methodology for real-time forecasting of infrequent events," Journal of Computational Social Science, Springer, vol. 5(2), pages 1489-1510, November.
    17. Falco J. Bargagli-Dtoffi & Massimo Riccaboni & Armando Rungi, 2020. "Machine Learning for Zombie Hunting. Firms Failures and Financial Constraints," Working Papers 01/2020, IMT School for Advanced Studies Lucca, revised Jun 2020.
    18. Marco Due~nas & V'ictor Ortiz & Massimo Riccaboni & Francesco Serti, 2021. "Assessing the Impact of COVID-19 on Trade: a Machine Learning Counterfactual Analysis," Papers 2104.04570, arXiv.org.
    19. Jianyuan Deng & Zhibo Yang & Hehe Wang & Iwao Ojima & Dimitris Samaras & Fusheng Wang, 2023. "A systematic study of key elements underlying molecular property prediction," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    20. Kwanda Sydwell Ngwenduna & Rendani Mbuvha, 2021. "Alleviating Class Imbalance in Actuarial Applications Using Generative Adversarial Networks," Risks, MDPI, vol. 9(3), pages 1-33, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:14:p:7534-:d:594803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.