Classical and Neural Network Machine Learning to Determine the Risk of Marijuana Use
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Feng-Hsu Wang & Chih-Ming Lin, 2020. "The Utility of Artificial Neural Networks for the Non-Invasive Prediction of Metabolic Syndrome Based on Personal Characteristics," IJERPH, MDPI, vol. 17(24), pages 1-10, December.
- Sangwon Chae & Sungjun Kwon & Donghyun Lee, 2018. "Predicting Infectious Disease Using Deep Learning and Big Data," IJERPH, MDPI, vol. 15(8), pages 1-20, July.
- Wen-Yu Ou Yang & Cheng-Chien Lai & Meng-Ting Tsou & Lee-Ching Hwang, 2021. "Development of Machine Learning Models for Prediction of Osteoporosis from Clinical Health Examination Data," IJERPH, MDPI, vol. 18(14), pages 1-12, July.
- Cheng-Chien Lai & Wei-Hsin Huang & Betty Chia-Chen Chang & Lee-Ching Hwang, 2021. "Development of Machine Learning Models for Prediction of Smoking Cessation Outcome," IJERPH, MDPI, vol. 18(5), pages 1-10, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vanessa Alcalá-Rmz & Laura A. Zanella-Calzada & Carlos E. Galván-Tejada & Alejandra García-Hernández & Miguel Cruz & Adan Valladares-Salgado & Jorge I. Galván-Tejada & Hamurabi Gamboa-Rosales, 2019. "Identification of Diabetic Patients through Clinical and Para-Clinical Features in Mexico: An Approach Using Deep Neural Networks," IJERPH, MDPI, vol. 16(3), pages 1-12, January.
- Bowen Long & Fangya Tan & Mark Newman, 2023. "Forecasting the Monkeypox Outbreak Using ARIMA, Prophet, NeuralProphet, and LSTM Models in the United States," Forecasting, MDPI, vol. 5(1), pages 1-11, January.
- Alekh Gour & Shikha Aggarwal & Subodha Kumar, 2022. "Lending ears to unheard voices: An empirical analysis of user‐generated content on social media," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2457-2476, June.
- Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
- Corrado Lanera & Ileana Baldi & Andrea Francavilla & Elisa Barbieri & Lara Tramontan & Antonio Scamarcia & Luigi Cantarutti & Carlo Giaquinto & Dario Gregori, 2022. "A Deep Learning Approach to Estimate the Incidence of Infectious Disease Cases for Routinely Collected Ambulatory Records: The Example of Varicella-Zoster," IJERPH, MDPI, vol. 19(10), pages 1-13, May.
- Paulina Phoobane & Muthoni Masinde & Tafadzwanashe Mabhaudhi, 2022. "Predicting Infectious Diseases: A Bibliometric Review on Africa," IJERPH, MDPI, vol. 19(3), pages 1-20, February.
- Victor Olsavszky & Mihnea Dosius & Cristian Vladescu & Johannes Benecke, 2020. "Time Series Analysis and Forecasting with Automated Machine Learning on a National ICD-10 Database," IJERPH, MDPI, vol. 17(14), pages 1-17, July.
- Rui Zhang & Zhen Guo & Yujie Meng & Songwang Wang & Shaoqiong Li & Ran Niu & Yu Wang & Qing Guo & Yonghong Li, 2021. "Comparison of ARIMA and LSTM in Forecasting the Incidence of HFMD Combined and Uncombined with Exogenous Meteorological Variables in Ningbo, China," IJERPH, MDPI, vol. 18(11), pages 1-14, June.
- Shruti Sharma & Yogesh Kumar Gupta & Abhinava K. Mishra, 2023. "Analysis and Prediction of COVID-19 Multivariate Data Using Deep Ensemble Learning Methods," IJERPH, MDPI, vol. 20(11), pages 1-23, May.
- Israel Edem Agbehadji & Bankole Osita Awuzie & Alfred Beati Ngowi & Richard C. Millham, 2020. "Review of Big Data Analytics, Artificial Intelligence and Nature-Inspired Computing Models towards Accurate Detection of COVID-19 Pandemic Cases and Contact Tracing," IJERPH, MDPI, vol. 17(15), pages 1-16, July.
- Jihye Lim & Jungyoon Kim & Songhee Cheon, 2019. "A Deep Neural Network-Based Method for Early Detection of Osteoarthritis Using Statistical Data," IJERPH, MDPI, vol. 16(7), pages 1-11, April.
- Monday Osayande & Osagie Osifo, 2024. "Application Of Covid-19 Data: Investigating The Impact On Weekly Stock Market Returns In Nigeria," Journal of Academic Research in Economics, Spiru Haret University, Faculty of Accounting and Financial Management Constanta, vol. 16(2 (July)), pages 403-416.
- Lee, Donghyun & Kim, Mingyu & Lee, Beomhui & Chae, Sangwon & Kwon, Sungjun & Kang, Sungwon, 2022. "Integrated explainable deep learning prediction of harmful algal blooms," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
- Jiucheng Xu & Keqiang Xu & Zhichao Li & Fengxia Meng & Taotian Tu & Lei Xu & Qiyong Liu, 2020. "Forecast of Dengue Cases in 20 Chinese Cities Based on the Deep Learning Method," IJERPH, MDPI, vol. 17(2), pages 1-14, January.
- Jinhai Li & Yunlei Ma & Xinglong Xu & Jiaming Pei & Youshi He, 2022. "A Study on Epidemic Information Screening, Prevention and Control of Public Opinion Based on Health and Medical Big Data: A Case Study of COVID-19," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
More about this item
Keywords
cannabis; marijuana; neural network; personality traits; prevention; THC;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:14:p:7466-:d:593448. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.