IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i13p6858-d582732.html
   My bibliography  Save this article

Modelling Analysis of COVID-19 Transmission and the State of Emergency in Japan

Author

Listed:
  • Zhongxiang Chen

    (College of Engineering and Design, Hunan Normal University, Changsha 410081, China)

  • Zhiquan Shu

    (School of Engineering and Technology, University of Washington, Tacoma, WA 98402, USA)

  • Xiuxiang Huang

    (College of Engineering and Design, Hunan Normal University, Changsha 410081, China)

  • Ke Peng

    (College of Engineering and Design, Hunan Normal University, Changsha 410081, China)

  • Jiaji Pan

    (College of Engineering and Design, Hunan Normal University, Changsha 410081, China
    State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China)

Abstract

To assess the effectiveness of the containment strategies proposed in Japan, an SEIAQR (susceptible-exposed-infected-asymptomatic-quarantined-recovered) model was established to simulate the transmission of COVID-19. We divided the spread of COVID-19 in Japan into different stages based on policies. The effective reproduction number R e and the transmission parameters were determined to evaluate the measures conducted by the Japanese Government during these periods. On 7 April 2020, the Japanese authority declared a state of emergency to control the rapid development of the pandemic. Based on the simulation results, the spread of COVID-19 in Japan can be inhibited by containment actions during the state of emergency. The effective reproduction number R e reduced from 1.99 (before the state of emergency) to 0.92 (after the state of emergency). The transmission parameters were fitted and characterized with quantifiable variables including the ratio of untracked cases, the PCR test index and the proportion of COCOA app users (official contact confirming application). The impact of these variables on the control of COVID-19 was investigated in the modelling analysis. On 8 January 2021, the Japanese Government declared another state of emergency. The simulated results demonstrated that the spread could be controlled in May by keeping the same strategies. A higher intensity of PCR testing was suggested, and a larger proportion of COCOA app users should reduce the final number of infections and the time needed to control the spread of COVID-19.

Suggested Citation

  • Zhongxiang Chen & Zhiquan Shu & Xiuxiang Huang & Ke Peng & Jiaji Pan, 2021. "Modelling Analysis of COVID-19 Transmission and the State of Emergency in Japan," IJERPH, MDPI, vol. 18(13), pages 1-15, June.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:6858-:d:582732
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/13/6858/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/13/6858/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yi-Tui Chen & Yung-Feng Yen & Shih-Heng Yu & Emily Chia-Yu Su, 2020. "An Examination on the Transmission of COVID-19 and the Effect of Response Strategies: A Comparative Analysis," IJERPH, MDPI, vol. 17(16), pages 1-14, August.
    2. Zhan, Xiu-Xiu & Liu, Chuang & Zhou, Ge & Zhang, Zi-Ke & Sun, Gui-Quan & Zhu, Jonathan J.H. & Jin, Zhen, 2018. "Coupling dynamics of epidemic spreading and information diffusion on complex networks," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 437-448.
    3. Chad R. Wells & Jeffrey P. Townsend & Abhishek Pandey & Seyed M. Moghadas & Gary Krieger & Burton Singer & Robert H. McDonald & Meagan C. Fitzpatrick & Alison P. Galvani, 2021. "Optimal COVID-19 quarantine and testing strategies," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Djaoue, Seraphin & Guilsou Kolaye, Gabriel & Abboubakar, Hamadjam & Abba Ari, Ado Adamou & Damakoa, Irepran, 2020. "Mathematical modeling, analysis and numerical simulation of the COVID-19 transmission with mitigation of control strategies used in Cameroon," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junsik Park & Gurjoong Kim, 2021. "Risk of COVID-19 Infection in Public Transportation: The Development of a Model," IJERPH, MDPI, vol. 18(23), pages 1-16, December.
    2. Bong Gu Kang & Hee-Mun Park & Mi Jang & Kyung-Min Seo, 2021. "Hybrid Model-Based Simulation Analysis on the Effects of Social Distancing Policy of the COVID-19 Epidemic," IJERPH, MDPI, vol. 18(21), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Fulian & Jiang, Xinyi & Qian, Xiqing & Xia, Xinyu & Pan, Yanyan & Wu, Jianhong, 2022. "Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Chen, Jie & Hu, Mao-Bin & Li, Ming, 2020. "Traffic-driven epidemic spreading dynamics with heterogeneous infection rates," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    3. Chen, Zheng & Wu, Yong-Ping & Feng, Guo-Lin & Qian, Zhong-Hua & Sun, Gui-Quan, 2021. "Effects of global warming on pattern dynamics of vegetation: Wuwei in China as a case," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    4. Zhou, Xin & Liao, Wenzhu, 2023. "Research on demand forecasting and distribution of emergency medical supplies using an agent-based model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    5. Li, Wenyao & Cai, Meng & Zhong, Xiaoni & Liu, Yanbing & Lin, Tao & Wang, Wei, 2023. "Coevolution of epidemic and infodemic on higher-order networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Qu, Hongbo & Song, Yu-Rong & Li, Ruqi & Li, Min, 2023. "GNR: A universal and efficient node ranking model for various tasks based on graph neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
    7. Sudarshan Kumar & Tiziana Di Matteo & Anindya S. Chakrabarti, 2020. "Disentangling shock diffusion on complex networks: Identification through graph planarity," Papers 2001.01518, arXiv.org.
    8. Wei Zhang & Juan Zhang & Yong-Ping Wu & Li Li, 2019. "Dynamical Analysis of the SEIB Model for Brucellosis Transmission to the Dairy Cows with Immunological Threshold," Complexity, Hindawi, vol. 2019, pages 1-13, May.
    9. Ganegoda, Naleen & Götz, Thomas & Putra Wijaya, Karunia, 2021. "An age-dependent model for dengue transmission: Analysis and comparison to field data," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    10. Hu, Xin & Wang, Zhishuang & Sun, Qingyi & Chen, Jiaxing & Zhao, Dawei & Xia, Chengyi, 2024. "Coupled propagation between one communicable disease and related two types of information on multiplex networks with simplicial complexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    11. M., Pitchaimani & M., Brasanna Devi, 2020. "Random effects in HIV infection model at Eclipse stage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    12. Joren Raymenants & Caspar Geenen & Jonathan Thibaut & Klaas Nelissen & Sarah Gorissen & Emmanuel Andre, 2022. "Empirical evidence on the efficiency of backward contact tracing in COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Yi-Tui Chen & Yung-Feng Yen & Shih-Heng Yu & Emily Chia-Yu Su, 2020. "A Flexible Lockdown by Integrating Public Health and Economic Reactivation to Response the Crisis of COVID-19: Responses to Comments by Alvaro J Idrovo on “An Examination on the Transmission of COVID-," IJERPH, MDPI, vol. 17(21), pages 1-4, November.
    14. Chen, Xiaolong & Gong, Kai & Wang, Ruijie & Cai, Shimin & Wang, Wei, 2020. "Effects of heterogeneous self-protection awareness on resource-epidemic coevolution dynamics," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    15. Yu, Zhenhua & Zhang, Jingmeng & Zhang, Yun & Cong, Xuya & Li, Xiaobo & Mostafa, Almetwally M., 2024. "Mathematical modeling and simulation for COVID-19 with mutant and quarantined strategy," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    16. Chen, Xiao-Long & Wang, Rui-Jie & Yang, Chun & Cai, Shi-Min, 2019. "Hybrid resource allocation and its impact on the dynamics of disease spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 156-165.
    17. Li, Kun & Chen, Zhiyu & Cong, Rui & Zhang, Jianlei & Wei, Zhenlin, 2024. "Simulated dynamics of virus spreading on social networks with various topologies," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    18. Jingyi Wang & Rui Hu & Hua Xu, 2024. "Coupled Simultaneous Evolution of Policy, Enterprise Innovation Awareness, and Technology Diffusion in Multiplex Networks," Mathematics, MDPI, vol. 12(13), pages 1-19, July.
    19. Wang, Zhixiao & Rui, Xiaobin & Yuan, Guan & Cui, Jingjing & Hadzibeganovic, Tarik, 2021. "Endemic information-contagion outbreaks in complex networks with potential spreaders based recurrent-state transmission dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    20. Jamie Bedson & Laura A. Skrip & Danielle Pedi & Sharon Abramowitz & Simone Carter & Mohamed F. Jalloh & Sebastian Funk & Nina Gobat & Tamara Giles-Vernick & Gerardo Chowell & João Rangel Almeida & Ran, 2021. "A review and agenda for integrated disease models including social and behavioural factors," Nature Human Behaviour, Nature, vol. 5(7), pages 834-846, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:6858-:d:582732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.