IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i13p6858-d582732.html
   My bibliography  Save this article

Modelling Analysis of COVID-19 Transmission and the State of Emergency in Japan

Author

Listed:
  • Zhongxiang Chen

    (College of Engineering and Design, Hunan Normal University, Changsha 410081, China)

  • Zhiquan Shu

    (School of Engineering and Technology, University of Washington, Tacoma, WA 98402, USA)

  • Xiuxiang Huang

    (College of Engineering and Design, Hunan Normal University, Changsha 410081, China)

  • Ke Peng

    (College of Engineering and Design, Hunan Normal University, Changsha 410081, China)

  • Jiaji Pan

    (College of Engineering and Design, Hunan Normal University, Changsha 410081, China
    State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China)

Abstract

To assess the effectiveness of the containment strategies proposed in Japan, an SEIAQR (susceptible-exposed-infected-asymptomatic-quarantined-recovered) model was established to simulate the transmission of COVID-19. We divided the spread of COVID-19 in Japan into different stages based on policies. The effective reproduction number R e and the transmission parameters were determined to evaluate the measures conducted by the Japanese Government during these periods. On 7 April 2020, the Japanese authority declared a state of emergency to control the rapid development of the pandemic. Based on the simulation results, the spread of COVID-19 in Japan can be inhibited by containment actions during the state of emergency. The effective reproduction number R e reduced from 1.99 (before the state of emergency) to 0.92 (after the state of emergency). The transmission parameters were fitted and characterized with quantifiable variables including the ratio of untracked cases, the PCR test index and the proportion of COCOA app users (official contact confirming application). The impact of these variables on the control of COVID-19 was investigated in the modelling analysis. On 8 January 2021, the Japanese Government declared another state of emergency. The simulated results demonstrated that the spread could be controlled in May by keeping the same strategies. A higher intensity of PCR testing was suggested, and a larger proportion of COCOA app users should reduce the final number of infections and the time needed to control the spread of COVID-19.

Suggested Citation

  • Zhongxiang Chen & Zhiquan Shu & Xiuxiang Huang & Ke Peng & Jiaji Pan, 2021. "Modelling Analysis of COVID-19 Transmission and the State of Emergency in Japan," IJERPH, MDPI, vol. 18(13), pages 1-15, June.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:6858-:d:582732
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/13/6858/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/13/6858/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Djaoue, Seraphin & Guilsou Kolaye, Gabriel & Abboubakar, Hamadjam & Abba Ari, Ado Adamou & Damakoa, Irepran, 2020. "Mathematical modeling, analysis and numerical simulation of the COVID-19 transmission with mitigation of control strategies used in Cameroon," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Yi-Tui Chen & Yung-Feng Yen & Shih-Heng Yu & Emily Chia-Yu Su, 2020. "An Examination on the Transmission of COVID-19 and the Effect of Response Strategies: A Comparative Analysis," IJERPH, MDPI, vol. 17(16), pages 1-14, August.
    3. Zhan, Xiu-Xiu & Liu, Chuang & Zhou, Ge & Zhang, Zi-Ke & Sun, Gui-Quan & Zhu, Jonathan J.H. & Jin, Zhen, 2018. "Coupling dynamics of epidemic spreading and information diffusion on complex networks," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 437-448.
    4. Chad R. Wells & Jeffrey P. Townsend & Abhishek Pandey & Seyed M. Moghadas & Gary Krieger & Burton Singer & Robert H. McDonald & Meagan C. Fitzpatrick & Alison P. Galvani, 2021. "Optimal COVID-19 quarantine and testing strategies," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junsik Park & Gurjoong Kim, 2021. "Risk of COVID-19 Infection in Public Transportation: The Development of a Model," IJERPH, MDPI, vol. 18(23), pages 1-16, December.
    2. Bong Gu Kang & Hee-Mun Park & Mi Jang & Kyung-Min Seo, 2021. "Hybrid Model-Based Simulation Analysis on the Effects of Social Distancing Policy of the COVID-19 Epidemic," IJERPH, MDPI, vol. 18(21), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    2. Liu, Weiwei & Song, Yifan & Bi, Kexin, 2021. "Exploring the patent collaboration network of China's wind energy industry: A study based on patent data from CNIPA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Yin, Fulian & Jiang, Xinyi & Qian, Xiqing & Xia, Xinyu & Pan, Yanyan & Wu, Jianhong, 2022. "Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    4. Yuan, Guanghui & Han, Jingti & Zhou, Lei & Liang, Hejun & Zhang, Yicheng, 2019. "Supply and demand law under variable information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    5. Xuzhen Zhu & Jinming Ma & Xin Su & Hui Tian & Wei Wang & Shimin Cai, 2019. "Information Spreading on Weighted Multiplex Social Network," Complexity, Hindawi, vol. 2019, pages 1-15, November.
    6. Li, Ling & Dong, Gaogao & Zhu, Huaiping & Tian, Lixin, 2024. "Impact of multiple doses of vaccination on epidemiological spread in multiple networks," Applied Mathematics and Computation, Elsevier, vol. 472(C).
    7. Li, WenYao & Xue, Xiaoyu & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Competing spreading dynamics in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    8. Chen, Jie & Hu, Mao-Bin & Li, Ming, 2020. "Traffic-driven epidemic spreading dynamics with heterogeneous infection rates," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    9. Chen, Zheng & Wu, Yong-Ping & Feng, Guo-Lin & Qian, Zhong-Hua & Sun, Gui-Quan, 2021. "Effects of global warming on pattern dynamics of vegetation: Wuwei in China as a case," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    10. Huang, He & Chen, Yahong & Yan, Zhijun, 2021. "Impacts of social distancing on the spread of infectious diseases with asymptomatic infection: A mathematical model," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    11. Peng, Hao & Peng, Wangxin & Zhao, Dandan & Wang, Wei, 2020. "Impact of the heterogeneity of adoption thresholds on behavior spreading in complex networks," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    12. Wang, Haiying & Moore, Jack Murdoch & Small, Michael & Wang, Jun & Yang, Huijie & Gu, Changgui, 2022. "Epidemic dynamics on higher-dimensional small world networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    13. Xie, Yingkang & Wang, Zhen & Lu, Junwei & Li, Yuxia, 2020. "Stability analysis and control strategies for a new SIS epidemic model in heterogeneous networks," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    14. Zhou, Xin & Liao, Wenzhu, 2023. "Research on demand forecasting and distribution of emergency medical supplies using an agent-based model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    15. Li, Wenyao & Cai, Meng & Zhong, Xiaoni & Liu, Yanbing & Lin, Tao & Wang, Wei, 2023. "Coevolution of epidemic and infodemic on higher-order networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    16. Qu, Hongbo & Song, Yu-Rong & Li, Ruqi & Li, Min, 2023. "GNR: A universal and efficient node ranking model for various tasks based on graph neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
    17. Sudarshan Kumar & Tiziana Di Matteo & Anindya S. Chakrabarti, 2020. "Disentangling shock diffusion on complex networks: Identification through graph planarity," Papers 2001.01518, arXiv.org.
    18. Wei Zhang & Juan Zhang & Yong-Ping Wu & Li Li, 2019. "Dynamical Analysis of the SEIB Model for Brucellosis Transmission to the Dairy Cows with Immunological Threshold," Complexity, Hindawi, vol. 2019, pages 1-13, May.
    19. Zhu, Hongmiao & Wang, Yumie & Yan, Xin & Jin, Zhen, 2022. "Research on knowledge dissemination model in the multiplex network with enterprise social media and offline transmission routes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    20. d’Onofrio, Alberto & Banerjee, Malay & Manfredi, Piero, 2020. "Spatial behavioural responses to the spread of an infectious disease can suppress Turing and Turing–Hopf patterning of the disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:6858-:d:582732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.