IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v554y2020ics0378437120303368.html
   My bibliography  Save this article

Random effects in HIV infection model at Eclipse stage

Author

Listed:
  • M., Pitchaimani
  • M., Brasanna Devi

Abstract

In Mathematical biological models, the disease transmission rates play a crucial role by admitting different contexts in the course of disease dynamics. In the present work, an endeavor to understand the HIV dynamics with cure at Eclipse stage of infection with specific non-linear incidence rates have been accomplished. Together with the analysis on stability properties of the solutions at equilibrium points, the aggressive nature of the disease over longer period has been instituted by adopting the Lyapunov technique. The effort taken to perceive the vigorousness of the infection has not been limited to theoretical perspectives but supplemented with numerical evidences. The numerical substantiations widened the spectacular view to settle upon and rely on the presented model with randomness over other modeling approaches.

Suggested Citation

  • M., Pitchaimani & M., Brasanna Devi, 2020. "Random effects in HIV infection model at Eclipse stage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
  • Handle: RePEc:eee:phsmap:v:554:y:2020:i:c:s0378437120303368
    DOI: 10.1016/j.physa.2020.124681
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120303368
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124681?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González, Ramón E.R. & Coutinho, Sérgio & Zorzenon dos Santos, Rita Maria & de Figueirêdo, Pedro Hugo, 2013. "Dynamics of the HIV infection under antiretroviral therapy: A cellular automata approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4701-4716.
    2. Precharattana, Monamorn & Triampo, Wannapong, 2014. "Modeling dynamics of HIV infected cells using stochastic cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 303-311.
    3. Liu, Chuang & Zhou, Nan & Zhan, Xiu-Xiu & Sun, Gui-Quan & Zhang, Zi-Ke, 2020. "Markov-based solution for information diffusion on adaptive social networks," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    4. M. Pitchaimani & R. Rajaji, 2016. "Stochastic Asymptotic Stability of Nowak-May Model with Variable Diffusion Rates," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 901-910, September.
    5. Zhan, Xiu-Xiu & Liu, Chuang & Zhou, Ge & Zhang, Zi-Ke & Sun, Gui-Quan & Zhu, Jonathan J.H. & Jin, Zhen, 2018. "Coupling dynamics of epidemic spreading and information diffusion on complex networks," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 437-448.
    6. Li, Li & Zhang, Jie & Liu, Chen & Zhang, Hong-Tao & Wang, Yi & Wang, Zhen, 2019. "Analysis of transmission dynamics for Zika virus on networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 566-577.
    7. Mojaver, Aida & Kheiri, Hossein, 2015. "Mathematical analysis of a class of HIV infection models of CD4+ T-cells with combined antiretroviral therapy," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 258-270.
    8. Xing, Yi & Song, Lipeng & Sun, Gui-Quan & Jin, Zhen & Zhang, Juan, 2017. "Assessing reappearance factors of H7N9 avian influenza in China," Applied Mathematics and Computation, Elsevier, vol. 309(C), pages 192-204.
    9. Rajasekar, S.P. & Pitchaimani, M. & Zhu, Quanxin, 2019. "Dynamic threshold probe of stochastic SIR model with saturated incidence rate and saturated treatment function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    10. Guo, Zun-Guang & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen & Li, Li & Li, Can, 2020. "Spatial dynamics of an epidemic model with nonlocal infection," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    11. Mao, Xuerong & Marion, Glenn & Renshaw, Eric, 2002. "Environmental Brownian noise suppresses explosions in population dynamics," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 95-110, January.
    12. Seroussi, Inbar & Levy, Nir & Yom-Tov, Elad, 2020. "Multi-season analysis reveals the spatial structure of disease spread," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    13. Rajasekar, S.P. & Pitchaimani, M. & Zhu, Quanxin, 2020. "Progressive dynamics of a stochastic epidemic model with logistic growth and saturated treatment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pitchaimani, M. & Brasanna Devi, M., 2021. "Stochastic probical strategies in a delay virus infection model to combat COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Prakash, Shivendra & Markfort, Corey D., 2022. "A Monte-Carlo based 3-D ballistics model for guiding bat carcass surveys using environmental and turbine operational data," Ecological Modelling, Elsevier, vol. 470(C).
    3. M, Pitchaimani & M, Brasanna Devi, 2021. "Stochastic dynamical probes in a triple delayed SICR model with general incidence rate and immunization strategies," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Bo & Wang, Ying & Han, Yu & He, Yuchang & Wang, Ziwei, 2021. "Interaction patterns and coordination in two population groups: A dynamic perspective," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Feng, Guo-Lin & Yang, Jie & Zhi, Rong & Zhao, Jun-Hu & Gong, Zhi-Qiang & Zheng, Zhi-Hai & Xiong, Kai-Guo & Qiao, Shao-Bo & Yan, Ziheng & Wu, Yong-Ping & Sun, Gui-Quan, 2020. "Improved prediction model for flood-season rainfall based on a nonlinear dynamics-statistic combined method," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Yin, Fulian & Jiang, Xinyi & Qian, Xiqing & Xia, Xinyu & Pan, Yanyan & Wu, Jianhong, 2022. "Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    4. Rajasekar, S.P. & Pitchaimani, M., 2020. "Ergodic stationary distribution and extinction of a stochastic SIRS epidemic model with logistic growth and nonlinear incidence," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    5. Chen, Zheng & Wu, Yong-Ping & Feng, Guo-Lin & Qian, Zhong-Hua & Sun, Gui-Quan, 2021. "Effects of global warming on pattern dynamics of vegetation: Wuwei in China as a case," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    6. Guo, Zun-Guang & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen & Li, Li & Li, Can, 2020. "Spatial dynamics of an epidemic model with nonlocal infection," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    7. Wei Zhang & Juan Zhang & Yong-Ping Wu & Li Li, 2019. "Dynamical Analysis of the SEIB Model for Brucellosis Transmission to the Dairy Cows with Immunological Threshold," Complexity, Hindawi, vol. 2019, pages 1-13, May.
    8. Gashirai, Tinashe B. & Musekwa-Hove, Senelani D. & Lolika, Paride O. & Mushayabasa, Steady, 2020. "Global stability and optimal control analysis of a foot-and-mouth disease model with vaccine failure and environmental transmission," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    9. Chen, Xiaolong & Gong, Kai & Wang, Ruijie & Cai, Shimin & Wang, Wei, 2020. "Effects of heterogeneous self-protection awareness on resource-epidemic coevolution dynamics," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    10. Li, WenYao & Xue, Xiaoyu & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Competing spreading dynamics in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    11. Peng, Hao & Peng, Wangxin & Zhao, Dandan & Wang, Wei, 2020. "Impact of the heterogeneity of adoption thresholds on behavior spreading in complex networks," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    12. Zhu, Hongmiao & Wang, Yumie & Yan, Xin & Jin, Zhen, 2022. "Research on knowledge dissemination model in the multiplex network with enterprise social media and offline transmission routes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    13. d’Onofrio, Alberto & Banerjee, Malay & Manfredi, Piero, 2020. "Spatial behavioural responses to the spread of an infectious disease can suppress Turing and Turing–Hopf patterning of the disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    14. Pitchaimani, M. & Brasanna Devi, M., 2021. "Stochastic probical strategies in a delay virus infection model to combat COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    15. Saha, Sangeeta & Dutta, Protyusha & Samanta, Guruprasad, 2022. "Dynamical behavior of SIRS model incorporating government action and public response in presence of deterministic and fluctuating environments," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    16. Tong, Jinying & Zhang, Zhenzhong & Bao, Jianhai, 2013. "The stationary distribution of the facultative population model with a degenerate noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 655-664.
    17. Huang, Zaitang & Cao, Junfei, 2018. "Ergodicity and bifurcations for stochastic logistic equation with non-Gaussian Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 1-10.
    18. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.
    19. Shi, Zhenfeng & Zhang, Xinhong & Jiang, Daqing, 2019. "Dynamics of an avian influenza model with half-saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 399-416.
    20. Liu, Meng & Wang, Ke, 2009. "Survival analysis of stochastic single-species population models in polluted environments," Ecological Modelling, Elsevier, vol. 220(9), pages 1347-1357.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:554:y:2020:i:c:s0378437120303368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.