IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20742-8.html
   My bibliography  Save this article

Optimal COVID-19 quarantine and testing strategies

Author

Listed:
  • Chad R. Wells

    (Yale School of Public Health)

  • Jeffrey P. Townsend

    (Yale School of Public Health
    Yale University
    Yale University
    Yale University)

  • Abhishek Pandey

    (Yale School of Public Health)

  • Seyed M. Moghadas

    (York University)

  • Gary Krieger

    (NewFields E&E
    University of Colorado Anschutz Medical Campus)

  • Burton Singer

    (University of Florida)

  • Robert H. McDonald

    (Group Health, Safety and Environment; BHP)

  • Meagan C. Fitzpatrick

    (Yale School of Public Health
    University of Maryland School of Medicine)

  • Alison P. Galvani

    (Yale School of Public Health
    Yale University)

Abstract

For COVID-19, it is vital to understand if quarantines shorter than 14 days can be equally effective with judiciously deployed testing. Here, we develop a mathematical model that quantifies the probability of post-quarantine transmission incorporating testing into travel quarantine, quarantine of traced contacts with an unknown time of infection, and quarantine of cases with a known time of exposure. We find that testing on exit (or entry and exit) can reduce the duration of a 14-day quarantine by 50%, while testing on entry shortens quarantine by at most one day. In a real-world test of our theory applied to offshore oil rig employees, 47 positives were obtained with testing on entry and exit to quarantine, of which 16 had tested negative at entry; preventing an expected nine offshore transmission events that each could have led to outbreaks. We show that appropriately timed testing can make shorter quarantines effective.

Suggested Citation

  • Chad R. Wells & Jeffrey P. Townsend & Abhishek Pandey & Seyed M. Moghadas & Gary Krieger & Burton Singer & Robert H. McDonald & Meagan C. Fitzpatrick & Alison P. Galvani, 2021. "Optimal COVID-19 quarantine and testing strategies," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20742-8
    DOI: 10.1038/s41467-020-20742-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20742-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20742-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongxiang Chen & Zhiquan Shu & Xiuxiang Huang & Ke Peng & Jiaji Pan, 2021. "Modelling Analysis of COVID-19 Transmission and the State of Emergency in Japan," IJERPH, MDPI, vol. 18(13), pages 1-15, June.
    2. Zhou, Xin & Liao, Wenzhu, 2023. "Research on demand forecasting and distribution of emergency medical supplies using an agent-based model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    3. Eslami, Keyvan & Lee, Hyunju, 2024. "Overreaction and the value of information in a pandemic," European Economic Review, Elsevier, vol. 161(C).
    4. Joren Raymenants & Caspar Geenen & Jonathan Thibaut & Klaas Nelissen & Sarah Gorissen & Emmanuel Andre, 2022. "Empirical evidence on the efficiency of backward contact tracing in COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Wang, Haiying & Moore, Jack Murdoch & Small, Michael & Wang, Jun & Yang, Huijie & Gu, Changgui, 2022. "Epidemic dynamics on higher-dimensional small world networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20742-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.