IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i13p6806-d581686.html
   My bibliography  Save this article

Concentrations of Seven Phthalate Monoesters in Infants and Toddlers Quantified in Urine Extracted from Diapers

Author

Listed:
  • Fiorella Lucarini

    (Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland)

  • Marc Blanchard

    (Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland)

  • Tropoja Krasniqi

    (Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland)

  • Nicolas Duda

    (Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland)

  • Gaëlle Bailat Rosset

    (Scitec Research SA, Av. De Provence 18, 1007 Lausanne, Switzerland)

  • Alessandro Ceschi

    (Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
    Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
    Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, 8091 Zurich, Switzerland)

  • Nicolas Roth

    (Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, 4055 Basel, Switzerland)

  • Nancy B. Hopf

    (Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, 4055 Basel, Switzerland
    Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1007 Lausanne, Switzerland)

  • Marie-Christine Broillet

    (Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland)

  • Davide Staedler

    (Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
    Scitec Research SA, Av. De Provence 18, 1007 Lausanne, Switzerland)

Abstract

Carrying out exposure studies on children who are not toilet trained is challenging because of the difficulty of urine sampling. In this study, we optimized a protocol for urine collection from disposable diapers for the analysis of phthalate metabolites. The exposure of Swiss children ( n = 113) between 6 months and 3 years of life to seven phthalates was assessed by gas chromatography–mass spectrometry measurements. The study showed limited exposures to phthalates, with only 22% of the samples containing some of the metabolites investigated. The three most frequently detected metabolites were monoethyl phthalate, mono-cyclohexyl phthalate, and mono-benzyl phthalate. We also detected mono- n -octyl phthalate and mono(3,5,5-trimethylhexyl) phthalate, which have rarely been observed in urine from infants and toddlers; therefore, di-n-octyl phthalate and bis(3,5,5-trimethylhexyl) phthalate can be considered as potentially new emerging phthalates. This study presents an initial snapshot of the Swiss children’s exposure to phthalates and provides a promising approach for further phthalate biomonitoring studies on young children using disposable diapers as urine sampling technique.

Suggested Citation

  • Fiorella Lucarini & Marc Blanchard & Tropoja Krasniqi & Nicolas Duda & Gaëlle Bailat Rosset & Alessandro Ceschi & Nicolas Roth & Nancy B. Hopf & Marie-Christine Broillet & Davide Staedler, 2021. "Concentrations of Seven Phthalate Monoesters in Infants and Toddlers Quantified in Urine Extracted from Diapers," IJERPH, MDPI, vol. 18(13), pages 1-14, June.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:6806-:d:581686
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/13/6806/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/13/6806/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matthias Wormuth & Martin Scheringer & Meret Vollenweider & Konrad Hungerbühler, 2006. "What Are the Sources of Exposure to Eight Frequently Used Phthalic Acid Esters in Europeans?," Risk Analysis, John Wiley & Sons, vol. 26(3), pages 803-824, June.
    2. Fiorella Lucarini & Tropoja Krasniqi & Gaëlle Bailat Rosset & Nicolas Roth & Nancy B Hopf & Marie-Christine Broillet & Davide Staedler, 2020. "Exposure to New Emerging Bisphenols Among Young Children in Switzerland," IJERPH, MDPI, vol. 17(13), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun-Jung Yang & Taehyen Kim & Yeon-Pyo Hong, 2021. "Urinary Phthalate Levels Associated with the Risk of Nonalcoholic Fatty Liver Disease in Adults: The Korean National Environmental Health Survey (KoNEHS) 2012–2014," IJERPH, MDPI, vol. 18(11), pages 1-9, June.
    2. Giovanna Tranfo & Lidia Caporossi & Daniela Pigini & Silvia Capanna & Bruno Papaleo & Enrico Paci, 2018. "Temporal Trends of Urinary Phthalate Concentrations in Two Populations: Effects of REACH Authorization after Five Years," IJERPH, MDPI, vol. 15(9), pages 1-13, September.
    3. Samantha E. Serrano & Catherine J. Karr & Noah S. Seixas & Ruby H. N. Nguyen & Emily S. Barrett & Sarah Janssen & Bruce Redmon & Shanna H. Swan & Sheela Sathyanarayana, 2014. "Dietary Phthalate Exposure in Pregnant Women and the Impact of Consumer Practices," IJERPH, MDPI, vol. 11(6), pages 1-23, June.
    4. Ruihua Dong & Shanzhen Zhao & Han Zhang & Jingsi Chen & Meiru Zhang & Min Wang & Min Wu & Shuguang Li & Bo Chen, 2017. "Sex Differences in the Association of Urinary Concentrations of Phthalates Metabolites with Self-Reported Diabetes and Cardiovascular Diseases in Shanghai Adults," IJERPH, MDPI, vol. 14(6), pages 1-15, June.
    5. Barend L. van Drooge & Ioar Rivas & Xavier Querol & Jordi Sunyer & Joan O. Grimalt, 2020. "Organic Air Quality Markers of Indoor and Outdoor PM 2.5 Aerosols in Primary Schools from Barcelona," IJERPH, MDPI, vol. 17(10), pages 1-16, May.
    6. Sang-Woo Kim & Jeongho Lee & Soon-Chan Kwon & June-Hee Lee, 2021. "Association between Urinary Phthalate Metabolite Concentration and Atopic Dermatitis in Korean Adolescents Participating in the Third Korean National Environmental Health Survey, 2015–2017," IJERPH, MDPI, vol. 18(5), pages 1-10, February.
    7. Eun-Jung Yang & Byung-Sun Choi & Yun-Jung Yang, 2022. "Risk of Nonalcoholic Fatty Liver Disease Is Associated with Urinary Phthalate Metabolites Levels in Adults with Subclinical Hypothyroidism: Korean National Environmental Health Survey (KoNEHS) 2012–20," IJERPH, MDPI, vol. 19(6), pages 1-13, March.
    8. Sibylle Hildenbrand & Thomas Gabrio & Gerhard Volland, 2019. "Inter-Day Variability of Metabolites of DEHP and DnBP in Human Urine—Comparability of the Results of Longitudinal Studies with a Cross-Sectional Study," IJERPH, MDPI, vol. 16(6), pages 1-15, March.
    9. Te Liu & Yiyang Jia & Liting Zhou & Qi Wang & Di Sun & Jin Xu & Juan Wu & Huaiji Chen & Feng Xu & Lin Ye, 2016. "Effects of Di-(2-ethylhexyl) Phthalate on the Hypothalamus–Uterus in Pubertal Female Rats," IJERPH, MDPI, vol. 13(11), pages 1-15, November.
    10. Matthias Wormuth & Evangelia Demou & Martin Scheringer & Konrad Hungerbühler, 2007. "Assessments of Direct Human Exposure—The Approach of EU Risk Assessments Compared to Scenario‐Based Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 979-990, August.
    11. David Trudel & Lea Horowitz & Matthias Wormuth & Martin Scheringer & Ian T. Cousins & Konrad Hungerbühler, 2008. "Estimating Consumer Exposure to PFOS and PFOA," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 251-269, April.
    12. Jiahui Wang & Zefei Xu & Jingyu Yao & Maochao Hu & Yuewen Sun & Cong Dong & Zhongming Bu, 2022. "Identification of Phthalates from Artificial Products in Chinese Kindergarten Classrooms and the Implications for Preschool Children’s Exposure Assessments," IJERPH, MDPI, vol. 19(13), pages 1-12, June.
    13. Jingping Niu & Qingshan Qu & Juansheng Li & Xingrong Liu & Benzhong Zhang & Zhilan Li & Guowu Ding & Yingbiao Sun & Yanrong Shi & Yaxiong Wan & Xiaobin Hu & Lung-Chi Chen & Alan Mendelsohn & Yu Chen &, 2015. "Improving Knowledge about Children’s Environmental Health in Northwest China," IJERPH, MDPI, vol. 13(1), pages 1-10, December.
    14. Liujia Fan & Lixin Wang & Kexin Wang & Fang Liu & Gang Wang, 2022. "Phthalates in Glass Window Films of Chinese University Dormitories and Their Associations with Indoor Decorating Materials and Personal Care Products," IJERPH, MDPI, vol. 19(22), pages 1-12, November.
    15. A. Jarosova & J. Harazim & P. Suchy & L. Kratka & V. Stancova, 2009. "The distribution and accumulation of phthalates in the organs and tissues of chicks after the administration of feedstuffs with different phthalate concentrations," Veterinární medicína, Czech Academy of Agricultural Sciences, vol. 54(9), pages 427-434.
    16. Mengjie Yu & Qianqian Tang & Bingli Lei & Yingxin Yang & Lanbing Xu, 2022. "Bisphenol AF Promoted the Growth of Uterus and Activated Estrogen Signaling Related Targets in Various Tissues of Nude Mice with SK-BR-3 Xenograft Tumor," IJERPH, MDPI, vol. 19(23), pages 1-12, November.
    17. Cécile Marie & Sophie Cabut & Françoise Vendittelli & Marie-Pierre Sauvant-Rochat, 2016. "Changes in Cosmetics Use during Pregnancy and Risk Perception by Women," IJERPH, MDPI, vol. 13(4), pages 1-16, March.
    18. Sashoy G. Milton & Rachel A. Tejiram & Rashmi Joglekar & Kate Hoffman, 2023. "Characterizing the Contribution of Indoor Residential Phthalate and Phthalate Alternative Dust Concentrations to Internal Dose in the US General Population: An Updated Systematic Review and Meta-Analy," IJERPH, MDPI, vol. 20(16), pages 1-19, August.
    19. Maryam Zare Jeddi & Mohamad Eshaghi Gorji & Ivonne M. C. M. Rietjens & Jochem Louisse & Yuri Bruinen de Bruin & Roman Liska, 2018. "Biomonitoring and Subsequent Risk Assessment of Combined Exposure to Phthalates in Iranian Children and Adolescents," IJERPH, MDPI, vol. 15(11), pages 1-22, October.
    20. Subin Park & Bung-Nyun Kim & Soo-Churl Cho & Yeni Kim & Jae-Won Kim & Ju-Young Lee & Soon-Beom Hong & Min-Sup Shin & Hee Jeong Yoo & Hosub Im & Jae Hoon Cheong & Doug Hyun Han, 2014. "Association between Urine Phthalate Levels and Poor Attentional Performance in Children with Attention-Deficit Hyperactivity Disorder with Evidence of Dopamine Gene-Phthalate Interaction," IJERPH, MDPI, vol. 11(7), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:6806-:d:581686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.