IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i12p6447-d574896.html
   My bibliography  Save this article

Bayesian Spatial Modeling of Anemia among Children under 5 Years in Guinea

Author

Listed:
  • Thierno Souleymane Barry

    (Mathematics (Statistics Option) Program, Pan African University Institute for Basic Sciences, Technology and Innovation (PAUISTI), Nairobi 62000-00200, Kenya)

  • Oscar Ngesa

    (Department of Mathematics and Physical Sciences, Taita Taveta University, Voi 635-80300, Kenya)

  • Nelson Owuor Onyango

    (School of Mathematics, College of Biology and Physical Sciences, University of Nairobi, Nairobi 30197, Kenya)

  • Henry Mwambi

    (School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban 4041, South Africa)

Abstract

Anemia is a major public health problem in Africa, affecting an increasing number of children under five years. Guinea is one of the most affected countries. In 2018, the prevalence rate in Guinea was 75% for children under five years. This study sought to identify the factors associated with anemia and to map spatial variation of anemia across the eight (8) regions in Guinea for children under five years, which can provide guidance for control programs for the reduction of the disease. Data from the Guinea Multiple Indicator Cluster Survey (MICS5) 2016 was used for this study. A total of 2609 children under five years who had full covariate information were used in the analysis. Spatial binomial logistic regression methodology was undertaken via Bayesian estimation based on Markov chain Monte Carlo (MCMC) using WinBUGS software version 1.4. The findings in this study revealed that 77% of children under five years in Guinea had anemia, and the prevalences in the regions ranged from 70.32% (Conakry) to 83.60% (NZerekore) across the country. After adjusting for non-spatial and spatial random effects in the model, older children (48–59 months) (OR: 0.47, CI [0.29 0.70]) were less likely to be anemic compared to those who are younger (0–11 months). Children whose mothers had completed secondary school or above had a 33% reduced risk of anemia (OR: 0.67, CI [0.49 0.90]), and children from household heads from the Kissi ethnic group are less likely to have anemia than their counterparts whose leaders are from Soussou (OR: 0.48, CI [0.23 0.92]).

Suggested Citation

  • Thierno Souleymane Barry & Oscar Ngesa & Nelson Owuor Onyango & Henry Mwambi, 2021. "Bayesian Spatial Modeling of Anemia among Children under 5 Years in Guinea," IJERPH, MDPI, vol. 18(12), pages 1-18, June.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:12:p:6447-:d:574896
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/12/6447/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/12/6447/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yong Tu & Shi‐Ming Yu & Hua Sun, 2004. "Transaction‐Based Office Price Indexes: A Spatiotemporal Modeling Approach," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 32(2), pages 297-328, June.
    2. Flores, G. & Bauchner, H. & Feinstein, A.R. & Nguyen, U.-S.D.T., 1999. "The impact of ethnicity, family income, and parental education on children's health and use of health services," American Journal of Public Health, American Public Health Association, vol. 89(7), pages 1066-1071.
    3. Riccardo Borgoni & Francesco Billari, 2003. "Bayesian spatial analysis of demographic survey data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 8(3), pages 61-92.
    4. J. Law, 2009. "Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology by LAWSON, A. B," Biometrics, The International Biometric Society, vol. 65(2), pages 661-662, June.
    5. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    6. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Francke & Alex Van de Minne, 2021. "Modeling unobserved heterogeneity in hedonic price models," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 49(4), pages 1315-1339, December.
    2. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    3. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    4. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    5. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    6. Francisca Corpas-Burgos & Miguel A. Martinez-Beneito, 2021. "An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting," Mathematics, MDPI, vol. 9(4), pages 1-17, February.
    7. Li Xu & Qingshan Jiang & David R. Lairson, 2019. "Spatio-Temporal Variation of Gender-Specific Hypertension Risk: Evidence from China," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    8. Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    9. F. Corpas-Burgos & P. Botella-Rocamora & M. A. Martinez-Beneito, 2019. "On the convenience of heteroscedasticity in highly multivariate disease mapping," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1229-1250, December.
    10. Alexandra Schmidt & Ajax Moreira & Steven Helfand & Thais Fonseca, 2009. "Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 31(2), pages 101-112, April.
    11. Maike Tahden & Juliane Manitz & Klaus Baumgardt & Gerhard Fell & Thomas Kneib & Guido Hegasy, 2016. "Epidemiological and Ecological Characterization of the EHEC O104:H4 Outbreak in Hamburg, Germany, 2011," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.
    12. Marc Marí-Dell’Olmo & Miguel Ángel Martínez-Beneito, 2015. "A Multilevel Regression Model for Geographical Studies in Sets of Non-Adjacent Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.
    13. Peter Congdon, 2011. "The Spatial Pattern of Suicide in the US in Relation to Deprivation, Fragmentation and Rurality," Urban Studies, Urban Studies Journal Limited, vol. 48(10), pages 2101-2122, August.
    14. Hsu, Chia-Yueh & Chang, Shu-Sen & Lee, Esther S.T. & Yip, Paul S.F., 2015. "“Geography of suicide in Hong Kong: Spatial patterning, and socioeconomic correlates and inequalities”," Social Science & Medicine, Elsevier, vol. 130(C), pages 190-203.
    15. Shadi Rahimzadeh & Beata Burczynska & Alireza Ahmadvand & Ali Sheidaei & Sara Khademioureh & Forough Pazhuheian & Sahar Saeedi Moghaddam & James Bentham & Farshad Farzadfar & Mariachiara Di Cesare, 2021. "Geographical and socioeconomic inequalities in female breast cancer incidence and mortality in Iran: A Bayesian spatial analysis of registry data," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-16, March.
    16. Volker Schmid & Leonhard Held, 2004. "Bayesian Extrapolation of Space–Time Trends in Cancer Registry Data," Biometrics, The International Biometric Society, vol. 60(4), pages 1034-1042, December.
    17. Darren J. Mayne & Geoffrey G. Morgan & Bin B. Jalaludin & Adrian E. Bauman, 2018. "Does Walkability Contribute to Geographic Variation in Psychosocial Distress? A Spatial Analysis of 91,142 Members of the 45 and Up Study in Sydney, Australia," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    18. Marcus L. Nascimento & Kelly C. M. Gonçalves & Mario Jorge Mendonça, 2023. "Spatio-Temporal Instrumental Variables Regression with Missing Data: A Bayesian Approach," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 29-47, June.
    19. Corey Sparks & Joey Campbell, 2014. "An Application of Bayesian Methods to Small Area Poverty Rate Estimates," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 33(3), pages 455-477, June.
    20. Klein, Nadja & Herwartz, Helmut & Kneib, Thomas, 2020. "Modelling regional patterns of inefficiency: A Bayesian approach to geoadditive panel stochastic frontier analysis with an application to cereal production in England and Wales," Journal of Econometrics, Elsevier, vol. 214(2), pages 513-539.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:12:p:6447-:d:574896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.